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Requirements:

a) well-defined behavior at high energy
©  RG-fixed point controlling the UV-behavior of the theory

© ensures the absence of UV-divergences

b) predictivity
© fixed point has finite-dimensional UV-critical surface Sy
© fixing the position of a trajectory in Syv
<= experimental determination of relevant parameters
c) classical limit
© reconcile quantum theory with the experimental success of GR

©  RG-trajectories have part where GR is good approximation

d) question of unitarity

O information loss in black holes?



The phase diagram of Asymptotic Safety

M. Reuter and F. Saueressig, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054]
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The phase diagram of Causal Dynamical Triangulations
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FRGE and Dynamical Triangulations investigate the same path integral
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® covariant computation, Euclidean signature
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How does a causal structure influence Asymptotic Safety?




Functional Renormalization Group Equation

for foliated spacetimes



Foliation structure via ADM-decomposition

Preferred “time”-direction via foliation of space-time
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Foliation structure via ADM-decomposition

Preferred “time”-direction via foliation of space-time

® foliation structure M2+1 = St x M9 with y# — (1,2%):
ds® = eN?dt® + 0,5 (dz* + N'dt) (dz? + N7 dt)
® fundamental fields: g.. — (IV, N;, 045)

eN? + N;N* N;
Juv =
Ni Oij

Allows to include signature parameter e = +1




Foliated functional renormalization group equation

Flow equation: formally the same as in covariant construction
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STrave S > [davs

component fields KK—modes

© structure resembles: quantum field theory at finite temperature!

Advantages of the foliated flow equation:

® c-dependence: keep track of signature effects

® structure: same as in Causal Dynamical Triangulations



Comparison: phase diagrams for ADM-variables
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covariant computation

Euclidean e = 1 Lorentzian: e = —1



It’s all about choosing a gauge:

covariant formulation:
Juv = Guv + h,uy

perform covariant gauge-fixing (e.g., harmonic gauge)
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foliated formulation with ADM-fields g, — {N, N;,04;}
N=N+h, NZZNZ—l—hZ, az-j:6z-j+hz-j
perform temporal gauge-fixing (non-covariant):

h=0, h;=0

® fluctuations in the metric on the spatial slice only
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foliated formulation with ADM-fields g, — {N, N;,04;}
N=N+h, NZZNZ—l—hZ, az-j:6z-j+hz-j
perform temporal gauge-fixing (non-covariant):

h=0, h;=0

® fluctuations in the metric on the spatial slice only

ADM fields in temporal gauge

No fluctuations in stacking spatial slices!




Symmetries conserved by the foliated FRGE
fundamental fields: ~ {N(r,z), N;i(1,z), 64, (7, z) }
symmetry: general coordinate invariance inherited from ~,,. :
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® in ADM it is impossible to combine:
© linear background field method
© regulator A .S quadratic in fluctuation fields

© background Diff(M)-symmetry



Symmetries conserved by the foliated FRGE

background symmetry respected by FRGE:
® subgroup of linear transformations
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symmetry group of Horava-Lifshitz gravity




Wetterich Equation

for projectable Horava-Lifshitz gravity

[E. Manrique, S. Rechenberger, F.S., arXiv:1102.5012]
[S. Rechenberger, F.S., arXiv:1212.5114]

[A. Contillo, S. Rechenberger, F.S., arXiv:1309.7273]
[G. D’Odorico, M. Schutten, F.S., arXiv:1406.4366]

[M. Baggio, J. de Boer and K. Holsheimer, arXiv:1112.6416]
[D. Benedetti, F. Guarnieri, arXiv:1311.6253]



projective Horava-Lifshitz gravity in a nutshell
P. Horava, Phys. Rev. D79 (2009) 084008, arXiv:0901.3775

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: {N(7),Ni(t,2),04i(7,2)}

symmetry: Diff(M, X) C Diff(M)

® gpatial higher-derivative terms make theory power-counting renormalizable

® anisotropic dispersion relation breaks Lorentz-invariance
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central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: {N(7),Ni(t,2),04i(7,2)}

symmetry: Diff(M, X) C Diff(M)

® gpatial higher-derivative terms make theory power-counting renormalizable

® anisotropic dispersion relation breaks Lorentz-invariance

Can construct the effective average action for projectable HL-gravity

® scale-dependence governed by functional renormalization group equation
1 (2) -
kOkTk[p, @] = LSTr (rk + Rk) kO R

©  Complication: anisotropic models have two correlation lengths



Relation between Asymptotic Safety and Horava-Lifshitz gravity

Theory space: Horava-Lifshitz

Symmetry: foliation preserving

Subspace: Quantum Einstein Gravity
Symmetry: diffeomorphisms

also see: talk by G. D’Odorico tomorrow
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©  perturbation theory in higher-derivative coupling

® non-Gaussian Fixed Point (NGFP)
© fundamental theory: interacting Gravity

© Lorentz-invariant, non-perturbatively renormalizable

® anisotropic Gaussian Fixed Point (aGFP)
© fundamental theory: Hotava-Lifshitz gravity Gravity

© Lorentz-violating, perturbatively renormalizable



RG-flows of Horava-Lifshitz gravity in the IR

A. Contillo, S. Rechenberger, F.S., JHEP 1312 (2013) 017

RG-flow of anisotropic A-R truncation
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RG-flow of anisotropic A-R truncation
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Fixed points of the beta functions:

® Wheeler-de Witt metric = line of GFPs

© one IR attractive, one IR repulsive, one marginal direction

* NGFP:

G, = 0.49, A, =0.17, A = 0.44

© three UV-attractive eigen-directions

o imprint of Asymptotic Safety

anisotropic GFP providing UV-limit of HL-gravity not in truncation




Horava-Lifshitz gravity: recovering general relativity in the IR

0.6 G




Scale-dependence of dimensionful couplings
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GFP governs IR-behavior of HL-gravity
small value of cosmological constant makes A compatible with experiments




Summary and Outlook
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Summay
Asymptotic Safety Program

® strong evidence for a non-Gaussian fixed point:
© predictive: finite number of relevant parameters

© connected to classical general relativity in the IR

Connecting the FRG to CDT

® Constructed FRG probing CDT theory space

® prospects of comparing RG flows

Connection to Horava-Lifshitz gravity
® use different RG fixed points for continuum limit

® FRGE: key tool for establishing renormalizability

N4

Theory space: Horava-Lifshitz

Symmetry: foliation preserving

Subspace: Quantum Einstein Gravity
Symmetry: diffeomor phisms




Outlook

many proposals for quantum gravity within QFT:
® Asymptotic Safety
® (Causal) Dynamical Triangulations
® Horava-Lifshitz gravity
® first order formalism

® shape dynamics

differences:
® field content (metric, vielbein, ADM-variables, ... )

® symmetry group (diffeomorphisms, foliation preserving diff.)

unclear if theories are the same universality class
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many proposals for quantum gravity within QFT:
® Asymptotic Safety
® (Causal) Dynamical Triangulations
® Horava-Lifshitz gravity
® first order formalism

® shape dynamics

differences:
® field content (metric, vielbein, ADM-variables, ... )

® symmetry group (diffeomorphisms, foliation preserving diff.)

unclear if theories are the same universality class

RG techniques crucial in all models!
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