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Quantum Einstein gravity
• In gravitational interaction the spacetime metrics becomes a dynamical

object. The Einstein equation is

Rµν −

1

2
gµνR = −Λgµν + 8πGTµν

• G Newton constant: G = 6.67× 10−11 m3

kgs2

• Λ cosmological constant: Λ ≈ 10−35s−2

• quantum Einstein gravity (QEG) = gravitational interaction + quantum

field theory

• We use the elements of quantum field theory

• the metrics gµν plays the role of the field variable in the path

integral

• the action is a diffeomorphism invariant action

• couplings, the cosmological constant λ, Newton constant g



Quantum Einstein gravity
• The model cannot be extended beyond the ultraviolet (UV) limit, since around the

Gaussian fixed point (GFP)
λ = Λk−2 relevant,

g = Gkd−2 irrelevant.

• The loop correction do not modify the tree level scaling behaviors at the GFP.

• The Newton coupling g is irrelevant it diverges as g ∼ k2 the theory seems perturbatively

non-renormalizable.

• The classical description of gravity is an effective theory which looses its validity around

the Planck scale, therefore it is not complete.

Asymptotic safety + functional RG

• If there is a UV attractive non-gaussian fixed point (NGFP) in QEG, then the model can

be extended to arbitrarily high energies, without divergences.

• The scaling properties around the UV NGFP could overwrite the tree level scalings that

were obtained around the GFP.

• We use functional RG instead of perturbative RG since it can provide nonperturbative

flow equations and universal (less sensitive) results.



Renormalization
• The functional renormalization group method is a fundamental element of quantum field

theory.

• We know the high energy (UV) action, which describes the small distance interaction

between the elementary excitations. We look for the low energy IR (or large distance)

behavior.

• The RG method gives a functional integro-differential equation for the effective action,

which is called the Wetterich equation

Γ̇k =
1

2
Tr

Ṙk

Rk + Γ′′

k

=
1

2
,

where ′ = ∂/∂ϕ, ˙ = ∂/∂t, and the symbol Tr denotes the momentum integral and the

summation over the internal indices.



Regulators

The IR regulator has the form Rk[φ] =
1

2
φ · Rk · φ. It is a momentum dependent mass like

term, which serves as an IR cutoff and has the following properties

• lim
p2/k2

→0

Rk > 0: it serves as an IR regulator

• lim
k2/p2→0

Rk → 0: in the limit k → 0 we obtain back the form of Z

• lim
k2

→∞

Rk → ∞: for the microscopic action S = limk→Λ Γk (it serves as a UV

regulator, too)

The compactly supported smooth (css) regulator has the form (I. Nandori, JHEP 04 (2013) 150)

rcss =
R

p2
=

s1

exp[s1yb/(1− s2yb)]− 1
θ(1− s2y

b),

with y = p2/k2. Its limiting cases provide us the following commonly used regulator functions

lim
s1→0,s2=1

rcss =

(

1

yb
− 1

)

θ(1− y) Litim

lim
s1→0,s2→0

rcss =
1

yb
power law

lim
s1=1,s2→0

rcss =
1

exp[yb]− 1
exponential

If b = 1 then limy→0 yr = 1 and limy→∞ yr = 0.



QEG effective action
The QEG effective action with Einstein–Hilbert truncation is

Γk =
1

16πGk

∫

ddx
√

detgµν(2Λk −R) (1)

We use the forms of the QEG evolution equations (M. Reuter, F. Saueressig, PRD 65 (2002)

065016)

λ̇ = 2(2− η)λ+
1

2
(4π)1−d/2g[2d(d+ 1)Φ1

d/2(−2λ)− 8dΦ1

d/2(0)]

−d(d+ 1)ηΦ̃1

d/2(−2λ)],

ġ = (d− 2 + η)g, η =
gB1(λ)

1− gB2(λ)
anomalous dimension

The functions B1(λ) and B2(λ) are

B1(λ) =
1

3
(4π)1−d/2[d(d+ 1)Φ1

d/2−1
(−2λ)

−6d(d− 1)Φ2

d/2(−2λ)− 4dΦ1

d/2−1
(0)24Φ2

d/2(0)],

B2(λ) = −
1

6
(4π)1−d/2[d(d+ 1)Φ̃1

d/2−1
(−2λ)− 6d(d− 1)Φ̃2

d/2(−2λ)],

with the threshold functions Φp
n(ω) and Φ̃p

n(ω).



QEG phase space

UV: (UV) attractive focal point: λ∗

UV = 1/4,

g∗UV = 1/64,

eig.values: θ1,2 = (−5± i
√
167)/3,

G: hyperbolic point: λ∗

G = 0, g∗UV = 0

eig.values: sG1 = −2 and sG2 = d− 2

IR: (IR) attractive fixed point: λ∗

IR = 1/2, g∗IR = 0

eig.values: sIR1 = 0 and sIR2 = 1/2 0
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UV criticality
In the case of UV NGFP the eigenvalues of the corre-

sponding stability matrix can be written as

θ1,2 = θ′ ± iθ′′, and ν = 1/θ′

• s1 = s2 = 0 → Power law regulator

• s1 = 0, s2 = 1→ Litim’s regulator

• s1 = 1, s2 = 0→ Exponential regulator
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UV criticality

Taking into account wider regions in s1 and s2

The inflection point, where we have the minimi-

val sensitivity to the regulator parameters corre-

sponds to a rescaled Litim’s regulator of the form

ropt =

(

1

y
− 1

2

)

θ(1− y/2)

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

1/
ν

s2

s1=0.001

s1=0.1

s1=1

1.6

2.0

2.4

2.8

3.2

100 102 104 106

1/
ν

s1

Remarks:

• ν can be any real number:
• ν < 0 makes the NGFP UV repulsive
• ν = 0 gives limit cycle around the NGFP

• the product λ∗g∗ shows less sensitivity:
• if s1 → ∞ then λ∗ and g∗ become s2 independent and scale according to

λ∗ ∼ s−0.89
1

and g∗ ∼ s0.89
1

→ lims1→∞ λ∗g∗ ≈ 0.133

• at the extremum we have λ∗g∗ = 0.136



Crossover criticality

3-dimensional φ4 model with the potential

Ṽ =
N
∑

i=1

g̃i

(2i)!
φ2i

Evolution equations:

˙̃g1 = −2g̃1 + g̃2Φ̄
2

3/2(g̃1)

˙̃g2 = −g̃2 + 6g̃22Φ̄
3

3/2(g̃1) . . .
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Remarks:

• 2 couplings:
• maxima of exponent ν in s2
• largest value is found at at b = s2 = 1 and s1 → 0

• 4 couplings:
• minima of exponent ν in s2
• smallest value is found at at b = s2 = 1 and s1 → 0

Both correspond to the Litim’s regulator



IR criticality
The correlation length scales as

ξ ∼ (κ− κ∗)−ν ,

with the exponent ν = 1/2, κ = gλ, and

κ∗ = g∗λ∗ equals the value which is taken

at the fixed point and ξ = 1/kc is the re-

ciprocal of the scale kc where the evolution

stops.
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