# **Critical exponents in quantum Einstein gravity**<sup>a</sup>

Sándor Nagy

Department of Theoretical physics, University of Debrecen

Lefkada, 26 September

<sup>a</sup>S.N., B. Fazekas, L. Juhasz, K. Sailer, Phys. Rev. D88 116010 (2013)

## Outline

- Quantum Einstein gravity
- Functional renormalization group
  - Wetterich equation
  - regulators
- Asymptotic safety in QEG
  - UV criticality
  - crossover criticality
  - IR criticality

### **Quantum Einstein gravity**

• In gravitational interaction the spacetime metrics becomes a dynamical object. The Einstein equation is

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = -\Lambda g_{\mu\nu} + 8\pi G T_{\mu\nu}$$

- G Newton constant:  $G = 6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kgs}^2}$
- $\Lambda$  cosmological constant:  $\Lambda \approx 10^{-35} \text{s}^{-2}$
- quantum Einstein gravity (QEG) = gravitational interaction + quantum field theory
- We use the elements of quantum field theory
  - the metrics  $g_{\mu\nu}$  plays the role of the field variable in the path integral
  - the action is a diffeomorphism invariant action
  - couplings, the cosmological constant  $\lambda$ , Newton constant g

### **Quantum Einstein gravity**

• The model cannot be extended beyond the ultraviolet (UV) limit, since around the Gaussian fixed point (GFP)

 $\lambda = \Lambda k^{-2} \text{ relevant},$  $g = Gk^{d-2} \text{ irrelevant}.$ 

- The loop correction do not modify the tree level scaling behaviors at the GFP.
- The Newton coupling g is irrelevant it diverges as  $g \sim k^2$  the theory seems perturbatively non-renormalizable.
- The classical description of gravity is an effective theory which looses its validity around the Planck scale, therefore it is not complete.

#### **Asymptotic safety + functional RG**

- If there is a UV attractive non-gaussian fixed point (NGFP) in QEG, then the model can be extended to arbitrarily high energies, without divergences.
- The scaling properties around the UV NGFP could overwrite the tree level scalings that were obtained around the GFP.
- We use functional RG instead of perturbative RG since it can provide nonperturbative flow equations and universal (less sensitive) results.

#### Renormalization

- The functional renormalization group method is a fundamental element of quantum field theory.
- We know the high energy (UV) action, which describes the small distance interaction between the elementary excitations. We look for the low energy IR (or large distance) behavior.
- The RG method gives a functional integro-differential equation for the effective action, which is called the *Wetterich equation*

$$\dot{\Gamma}_k = \frac{1}{2} \operatorname{Tr} \frac{\dot{\mathcal{R}}_k}{\mathcal{R}_k + \Gamma_k''} = \frac{1}{2} \qquad ,$$

where  $' = \partial/\partial \varphi$ ,  $\dot{} = \partial/\partial t$ , and the symbol Tr denotes the momentum integral and the summation over the internal indices.

#### **Regulators**

The IR regulator has the form  $\mathcal{R}_k[\phi] = \frac{1}{2}\phi \cdot \mathcal{R}_k \cdot \phi$ . It is a momentum dependent mass like term, which serves as an IR cutoff and has the following properties

- $\lim_{p^2/k^2 \to 0} \mathcal{R}_k > 0$ : it serves as an IR regulator
- $\lim_{k^2/p^2 \to 0} \mathcal{R}_k \to 0$ : in the limit  $k \to 0$  we obtain back the form of Z
- $\lim_{k^2 \to \infty} \mathcal{R}_k \to \infty$ : for the microscopic action  $S = \lim_{k \to \Lambda} \Gamma_k$  (it serves as a UV regulator, too)

The compactly supported smooth (css) regulator has the form (I. Nandori, JHEP 04 (2013) 150)

$$r_{css} = \frac{R}{p^2} = \frac{s_1}{\exp[s_1 y^b / (1 - s_2 y^b)] - 1} \theta(1 - s_2 y^b),$$

with  $y = p^2/k^2$ . Its limiting cases provide us the following commonly used regulator functions

$$\lim_{s_1 \to 0, s_2 = 1} r_{css} = \left(\frac{1}{y^b} - 1\right) \theta(1 - y) \text{ Litim}$$
$$\lim_{s_1 \to 0, s_2 \to 0} r_{css} = \frac{1}{y^b} \text{ power law}$$
$$\lim_{s_1 = 1, s_2 \to 0} r_{css} = \frac{1}{\exp[y^b] - 1} \text{ exponential}$$

If b = 1 then  $\lim_{y\to 0} yr = 1$  and  $\lim_{y\to\infty} yr = 0$ .

#### **QEG effective action**

The QEG effective action with Einstein–Hilbert truncation is

$$\Gamma_k = \frac{1}{16\pi G_k} \int d^d x \sqrt{\det g_{\mu\nu}} (2\Lambda_k - R) \tag{1}$$

We use the forms of the QEG evolution equations (M. Reuter, F. Saueressig, PRD **65** (2002) 065016)

$$\begin{split} \dot{\lambda} &= 2(2-\eta)\lambda + \frac{1}{2}(4\pi)^{1-d/2}g[2d(d+1)\Phi_{d/2}^{1}(-2\lambda) - 8d\Phi_{d/2}^{1}(0) \\ &- d(d+1)\eta\tilde{\Phi}_{d/2}^{1}(-2\lambda)], \\ \dot{g} &= (d-2+\eta)g, \ \eta = \frac{gB_{1}(\lambda)}{1-gB_{2}(\lambda)} \text{ anomalous dimension} \end{split}$$

The functions  $B_1(\lambda)$  and  $B_2(\lambda)$  are

$$B_{1}(\lambda) = \frac{1}{3} (4\pi)^{1-d/2} [d(d+1)\Phi_{d/2-1}^{1}(-2\lambda) -6d(d-1)\Phi_{d/2}^{2}(-2\lambda) - 4d\Phi_{d/2-1}^{1}(0)24\Phi_{d/2}^{2}(0)],$$
  
$$B_{2}(\lambda) = -\frac{1}{6} (4\pi)^{1-d/2} [d(d+1)\tilde{\Phi}_{d/2-1}^{1}(-2\lambda) - 6d(d-1)\tilde{\Phi}_{d/2}^{2}(-2\lambda)],$$

with the threshold functions  $\Phi_n^p(\omega)$  and  $\tilde{\Phi}_n^p(\omega)$ .

#### **QEG phase space**

- UV: (UV) attractive focal point:  $\lambda_{UV}^* = 1/4$ ,  $g_{UV}^* = 1/64$ , eig.values:  $\theta_{1,2} = (-5 \pm i\sqrt{167})/3$ ,
  - **G:** hyperbolic point:  $\lambda_G^* = 0, g_{UV}^* = 0$ eig.values:  $s_{G1} = -2$  and  $s_{G2} = d - 2$
- **IR:** (IR) attractive fixed point:  $\lambda_{IR}^* = 1/2$ ,  $g_{IR}^* = 0$  eig.values:  $s_{IR1} = 0$  and  $s_{IR2} = 1/2$

#### **UV criticality**

In the case of UV NGFP the eigenvalues of the corresponding stability matrix can be written as

$$\theta_{1,2} = \theta' \pm i\theta'', \text{ and } \nu = 1/\theta'$$

- $s_1 = s_2 = 0 \rightarrow \mathbf{P}$ ower law regulator
- $s_1 = 0, \ s_2 = 1 \rightarrow$  Litim's regulator
- $s_1 = 1, \ s_2 = 0 \rightarrow \mathbf{E}$ xponential regulator





#### **UV criticality**

Taking into account wider regions in  $s_1$  and  $s_2$ 

The inflection point, where we have the minimival sensitivity to the regulator parameters corre- $\leq$  sponds to a rescaled Litim's regulator of the form

$$r_{opt} = \left(\frac{1}{y} - \frac{1}{2}\right)\theta(1 - y/2)$$



#### **Remarks:**

- $\nu$  can be any real number:
  - $\nu < 0$  makes the NGFP UV repulsive
  - $\nu = 0$  gives limit cycle around the NGFP

the product  $\lambda^* g^*$  shows less sensitivity:

• if  $s_1 \to \infty$  then  $\lambda^*$  and  $g^*$  become  $s_2$  independent and scale according to  $\lambda^* \sim s_1^{-0.89}$  and  $g^* \sim s_1^{0.89} \to \lim_{s_1 \to \infty} \lambda^* g^* \approx 0.133$ 

• at the extremum we have  $\lambda^* g^* = 0.136$ 

### **Crossover criticality**

3-dimensional  $\phi^4$  model with the potential

$$\tilde{V} = \sum_{i=1}^{N} \frac{\tilde{g}_i}{(2i)!} \phi^{2i}$$

Evolution equations:

$$\dot{\tilde{g}}_1 = -2\tilde{g}_1 + \tilde{g}_2 \bar{\Phi}_{3/2}^2(\tilde{g}_1) \dot{\tilde{g}}_2 = -\tilde{g}_2 + 6\tilde{g}_2^2 \bar{\Phi}_{3/2}^3(\tilde{g}_1) ..$$

#### **Remarks:**

- 2 couplings:
  - maxima of exponent  $\nu$  in  $s_2$
  - largest value is found at at  $b = s_2 = 1$  and  $s_1 \to 0$
- 4 couplings:
  - minima of exponent u in  $s_2$
  - smallest value is found at at  $b = s_2 = 1$  and  $s_1 \to 0$

Both correspond to the Litim's regulator



#### **IR criticality**

The correlation length scales as

$$\xi \sim (\kappa - \kappa^*)^{-\nu},$$

with the exponent  $\nu = 1/2$ ,  $\kappa = g\lambda$ , and  $\omega \kappa^* = g^*\lambda^*$  equals the value which is taken at the fixed point and  $\xi = 1/k_c$  is the reciprocal of the scale  $k_c$  where the evolution stops.



| exponent | UV    | G     | IR                 |
|----------|-------|-------|--------------------|
| ν        | 0.679 | 0.5   | 0.5                |
| $\eta$   | -2    | $k^2$ | $(k - k_c)^{-3/2}$ |



#### Acknowledgments

This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 'National Excellence Program'.

# **Thank You for Your attention**