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AdS/CFT

The AdS/CFT duality: conjecture that certain quantum field theories

are equivalent to theories of gravity in higher dimensions Maldacena ’98.

Equivalent means that the two theories contain the same

degrees of freedom, but arranged in differnt ways.
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AdS/CFT

ds2 =
ℓ2

r2
(

dr2 + ηµνdx
µdxν

)

• A conformal field theory in d dimension has a dual geometric

description in terms of Anti de Sitter space AdSd+1

• xµ are mapped to the CFT space-time coordinates; r is mapped

to the CFT scale.

• Scale invariance is realized as an isometry:

r → λr xµ → λxµ
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AdS/CFT

Moving towards r = 0 ( AdS boundary) equivalent to reducing

the distance in space-time.
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AdS/CFT

Moving towards r = 0 ( AdS boundary) equivalent to reducing

the distance in space-time.
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Field/Operator correspondence

• An operator O(x) corresponds to a dynamical bulk field Φ(x, r)

• Φ(x, 0) represents a source for O in the CFT.

The QFT sources become dynamical fields in higher

dimensional curved spacetime
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Example: massive scalar in AdS

Sgrav[Φ] =
1

2

∫

ddxdr
[

gab∂aΦ∂bΦ−m2Φ2
]

∂2
rΦ+

3

r
∂rΦ+ ∂µ∂

µΦ = 0
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Example: massive scalar in AdS

Sgrav[Φ] =
1

2

∫

ddxdr
[

gab∂aΦ∂bΦ−m2Φ2
]

∂2
rΦ+

3

r
∂rΦ+ ∂µ∂

µΦ = 0

Φ(x, r) ∼ α(x)r(d−∆)+. . . r → 0

m2ℓ2 = ∆(∆− d)
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Example: massive scalar in AdS

Sgrav[Φ] =
1

2

∫

ddxdr
[

gab∂aΦ∂bΦ−m2Φ2
]

∂2
rΦ+

3

r
∂rΦ+ ∂µ∂

µΦ = 0

Φ(x, r) ∼ α(x)r(d−∆)+. . . r → 0 ⇔ SCFT = S0+

∫

d4xα(x)O(x)

m2ℓ2 = ∆(∆− d)
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Example: massive scalar in AdS

Sgrav[Φ] =
1

2

∫

ddxdr
[

gab∂aΦ∂bΦ−m2Φ2
]

∂2
rΦ+

3

r
∂rΦ+ ∂µ∂

µΦ = 0

Φ(x, r) ∼ α(x)r(d−∆)+. . . r → 0 ⇔ SCFT = S0+

∫

d4xα(x)O(x)

m2ℓ2 = ∆(∆− d)

Φ(x, r) is a scalar under the dilatation isometry

⇒ α(x) has scaling dimension d−∆
⇒ O(x) has dimension ∆
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Stress Tensor

In any CFT there is a symetric stress tensor Tµν . The source is the

boundary theory metric γµν(x). This can be naturally identified as

part of the bulk metric:

ds2 =
ℓ2

r2
[

dr2 + γµν(x, r)dx
µdxν

]

γµν(x) ≡ γµν(x, 0)
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Stress Tensor

In any CFT there is a symetric stress tensor Tµν . The source is the

boundary theory metric γµν(x). This can be naturally identified as

part of the bulk metric:

ds2 =
ℓ2

r2
[

dr2 + γµν(x, r)dx
µdxν

]

γµν(x) ≡ γµν(x, 0)

Sources become dynamical fields in the bulk

⇒ The bulk theory must have dynamical gravity

Sgrav = Md−2
p

∫

ddxdr
√
−g (R− 2Λ)
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Stress Tensor

In any CFT there is a symetric stress tensor Tµν . The source is the

boundary theory metric γµν(x). This can be naturally identified as

part of the bulk metric:

ds2 =
ℓ2

r2
[

dr2 + γµν(x, r)dx
µdxν

]

γµν(x) ≡ γµν(x, 0)

Sources become dynamical fields in the bulk

⇒ The bulk theory must have dynamical gravity

Sgrav = Md−2
p

∫

ddxdr
√
−g (R− 2Λ)

Typically the CFT admits a large-N limit in which Mp ∼ N2.

At large-N the map is between a quantum CFT and classical

AdS gravity
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Generating functional

The fundamental object corresponding to the QFT generating

functional is the gravity side action, evaluated on classical solutions

of the bulk field equations, with boundary conditions specified by

the source α:
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Generating functional

The fundamental object corresponding to the QFT generating

functional is the gravity side action, evaluated on classical solutions

of the bulk field equations, with boundary conditions specified by

the source α:

• Solve classical bulk field equations for Φ(x, r) with fixed

boundary conditions in the UV (r → 0):

Φα(x, r) → α(x)rd−∆, r → 0

• Evaluate the bulk action on the solution.

Sgrav [Φα(x, r)] = funcional of α(x)

ZQFT [α(x)] = exp
[

i Sgrav[Φα(x, r)]
]
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Generating functional

The fundamental object corresponding to the QFT generating

functional is the gravity side action, evaluated on classical solutions

of the bulk field equations, with boundary conditions specified by

the source α:

• Solve classical bulk field equations for Φ(x, r) with fixed

boundary conditions in the UV (r → 0):

Φα(x, r) → α(x)rd−∆, r → 0

• Evaluate the bulk action on the solution.

Sgrav [Φα(x, r)] = funcional of α(x)

ZQFT [α(x)] = exp
[

i Sgrav[Φα(x, r)]
]

The Holographic view on RG Flows – p.8

francesco nitti
Quantum

francesco nitti
Classical at large N

francesco nitti

francesco nitti



Couplings vs. Fields

Φ(x, r) = αr(d−∆)+. . . ⇔ SCFT = S0+

∫

d4xαO(x)
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Couplings vs. Fields

Φ(x, r) = 0 ⇔ SCFT = S0

α = 0 corresponds to an underformed CFT.

⇒ Bulk scalar is constant, spacetime is AdS
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Couplings vs. Fields

Φ(x, r) = αr(d−∆) + . . . ⇔ SCFT = S0 +

∫

d4xαO(x)

α ̸= 0 corresponds to a relevant coupling for the CFT.

⇒ a profile Φ(r) and deformation of AdS geometry in the interior.
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Running away from AdS

• α represents the bare UV coupling

• Around fixed points Φ(r) represents the running coupling:

µ = 1/r, Φ(µ) = αµ∆−d +O
(

µ−∆
)

β(Φ) = (∆− d)Φ

Φ ≃ αµ(∆UV −d)

µ → ∞

Φ ≃ Φ∗+α̃µ(∆IR−d)

µ → 0
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Running away from AdS

• α represents the bare UV coupling

• Around fixed points Φ(r) represents the running coupling:

µ = 1/r, Φ(µ) = αµ∆−d +O
(

µ−∆
)

β(Φ) = (∆− d)Φ

Φ ≃ αµ(∆UV −d)

µ → ∞

Φ ≃ Φ∗+α̃µ(∆IR−d)

µ → 0

• Naturally identify Φ(r) with running coupling all along the flow

• Field theory couplings become dynmical fields. Couplings are

naturally space-time dependent.
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Hologrphic Renormalization Group

The holographic renormalization group is the way to translate

between the field theory description of the running of couplings and

the geometric radial evolution encoded in the bulk field equations.

d
d log µΦ = β(Φ) ⇔ Classical bulk evolution equation for Φ(r)

A geometrization of the RG-flow.
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Local RG Equations

Bulk Einstein’s equations give rise to geometric flow equations for

the local sources on a fixed-r slice (scalars ΦI(x, r) and the induced

metric γµν(x, r)

{

Gab = 8πκTab

∇2Φ+m2Φ = 0
⇔

{

γ̇µν(x, r) = Bµν

Φ̇I(x, r) = BI(x, r)

The β-functions Bµν(x), BI(x), are written in terms of local

slice-covariant boundary quantities constructed with Φ(x) and the

induced metric γµν .
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Not just a metaphor

This may seem like a nice analogy or a made-up set of rules.
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Not just a metaphor

This may seem like a nice analogy or a made-up set of rules.

It actually works

In all cases where both sides are known explicitly (as different limits

of the same string setup) the spectrum of operators, anonalous

dimensions, correlators, anomalies, non-perturbative sectors...

match exactly

This includes (but is not limited to) N = 4 Super Yang-Mills and its

various relevant deformations.
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Setup

Simple setup: d+ 1-dimensional Einstein Gravity plus one scalar

field:

Sgrav = Md−1
p

∫

ddx

∫

du
√
−g

[

R−
1

2
(∂Φ)2 − V (Φ)

]

• Holographic coordinate u ranging from −∞ to uIR

• Only one scalar ↔ focus on a single operator O in the field

theory.Φ(u) = running coupling associated to O

• The potential V (φ) encodes the dimension of the operator and

the way the coupling runs.
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AdS solutions

If V (Φ) has an extremum at Φ∗ (V ′(Φ∗) = 0 with V (Φ∗) = V∗ < 0)

ds2 = du2 + e−u/ℓdx2d, Φ(u, xµ) = Φ∗, m2ℓ2 = ∆(∆− d)

Theory at a conformal fixed

point. If m2 < 0, we have a

relevant operator, and we ex-

pect IR deformations to exist.
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Deformations of AdS

Generic Poincaré-invariant solution:

ds2 = du2 + eA(u)ηµνdx
µdxν , Φ = Φ(u)
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Deformations of AdS

Generic Poincaré-invariant solution:

ds2 = du2 + eA(u)ηµνdx
µdxν , Φ = Φ(u)

The UV (IR) is represented by the region where eA(u) → +∞
(→ 0). Intuitively, we can think of eA as the energy scale.
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RG-flow solutions

Each extremum for V (Φ) will correspond to a different AdS
solution ⇒ a different conformal fixed point.
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RG-flow solutions

Each extremum for V (Φ) will correspond to a different AdS
solution ⇒ a different conformal fixed point.
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RG-flow solutions

Each extremum for V (Φ) will correspond to a different AdS
solution ⇒ a different conformal fixed point.

Solutions that interpolate be-

tween the two fixed points:

A(u) ∼ −u

{

u → −∞ UV

u → +∞ IR

φ(u) →

{

0 UV

φ∗ IR
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Superpotential

For a homogeneous ansatz, Einstein’s equations can be put in first

order form in terms of an auxiliary function W (Φ):

Φ̇ = W ′(Φ), Ȧ = −
1

2(d− 1)
W (Φ)

−
d

4(d− 1)
W 2 +

1

2

(

W ′
)2

= V

Once W (Φ) is found the other equations can be integrated trivially:

using Φ as a coordinate:

A(Φ) = A0(Φ0)−
1

2(d− 1)

∫ Φ

Φ0

dφ
W (φ)

W ′(φ)
,

Different solutions with the same W (Φ) all look the same up to

an additive integration consant in A.
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Superpotential solutions

The UV AdSis an attractor for the superpotential equation. ⇔
The UV fixed point is stable under relevant deformations.
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RG equation

(Renormalized) generating functional: S(ren)
grav [α]
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RG equation

(Renormalized) generating functional: S(ren)
grav [α]

Map α ↔ (A(u),Φ(u)) allows to rewrite it as a function of the field

on any interior slide:

S(ren)
grav [A,Φ] =

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]
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RG equation

(Renormalized) generating functional: S(ren)
grav [α]

Map α ↔ (A(u),Φ(u)) allows to rewrite it as a function of the field

on any interior slide:

S(ren)
grav [A,Φ] =

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

∂S

∂A
= ⟨Tµ

µ⟩
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RG equation

(Renormalized) generating functional: S(ren)
grav [α]

Map α ↔ (A(u),Φ(u)) allows to rewrite it as a function of the field

on any interior slide:

S(ren)
grav [A,Φ] =

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

∂S

∂A
= ⟨Tµ

µ⟩ = −2(d− 1)
W ′

W

∂S

∂Φ
= −2(d− 1)

W ′

W
⟨O⟩
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RG equation

(Renormalized) generating functional: S(ren)
grav [α]

Map α ↔ (A(u),Φ(u)) allows to rewrite it as a function of the field

on any interior slide:

S(ren)
grav [A,Φ] =

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

∂S

∂A
= ⟨Tµ

µ⟩ = −2(d− 1)
W ′

W

∂S

∂Φ
= −2(d− 1)

W ′

W
⟨O⟩

⇒ β(Φ) = −2(d− 1)
W ′

W
=

dΦ

dA
⇒ µ ≡ eA
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RG equation

(Renormalized) generating functional: S(ren)
grav [α]

Map α ↔ (A(u),Φ(u)) allows to rewrite it as a function of the field

on any interior slide:

S(ren)
grav [A,Φ] =

∫

ddx edA exp

[

− d

2(d− 1)

∫ Φ W

W ′

]

∂S

∂A
= ⟨Tµ

µ⟩ = −2(d− 1)
W ′

W

∂S

∂Φ
= −2(d− 1)

W ′

W
⟨O⟩

⇒ β(Φ) = −2(d− 1)
W ′

W
=

dΦ

dA
⇒ µ ≡ eA

S(ren)
grav [A,Φ] constant along the radial flow:

d

dA
S(ren)
grav [A,Φ(A)] =

[

∂

∂A
+

dΦ

dA

∂

∂Φ

]

S(ren)
grav [A,Φ(A)] = 0
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Beyond zeroth order

We want to generalize this approach to the case of

spacetime-dependent couplings, by keeping d-dimensional bulk

covariance. work with E. Kiritsis and Wenliang Li

The data will be the d-dimensional metric γµν(x, u) and scalar field

Φ(x, u) evaluated on a space-time slice in the bulk.

Changing the slice corresponds to changing the RG scale.
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Beyond zeroth order

We want to generalize this approach to the case of

spacetime-dependent couplings, by keeping d-dimensional bulk

covariance. work with E. Kiritsis and Wenliang Li

The data will be the d-dimensional metric γµν(x, u) and scalar field

Φ(x, u) evaluated on a space-time slice in the bulk.

Changing the slice corresponds to changing the RG scale.

We take a solution with a general space-time metric γµν(x, u), in

ADM form:

ds2 = N2du2+γµν(x)(dx
µ+Nµdu)(dxν+Nνdu), Φ = Φ(u, x)
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Flow equations

The flow equations tell how to go from one hypersurface of the

ADM slicing to another one nearby, as a function only on the

invariants on the slice.

They can be derived using Einstein’s constraint equations order

by order in a derivative expansion on the slice.
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Second order flow equations

Imposing the constraints, the 2-derivative order flow equations are

govenerd by only two functions W (Φ), f(Φ)
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Second order flow equations

Imposing the constraints, the 2-derivative order flow equations are

govenerd by only two functions W (Φ), f(Φ)

£nγµν = −
1

d− 1
γµν

(

W + fR+
W

2W ′
f ′(γρσ∂ρΦ∂σΦ)

)

+2fRµν +

(

W

W ′
f ′ − 2f ′′

)

∂µΦ∂νΦ− 2f ′∇µ∂νΦ

£nΦ = W ′ − f ′R+
1

2

(

W

W ′
f ′

)

′

(γρη∂ρΦ∂ηΦ) +
W

W ′
f ′(γρη∇ρ∂ηΦ)

W (Φ) and f(Φ) are solutions of:

d

4(d− 1)
W 2 −

1

2
W

′2 = −V, W ′f ′ −
d− 2

2(d− 1)
Wf = 1
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Beta-functions

∆µγµν = 2γµν + βµν , ∆µΦ = βΦ

βΦ = −2(d− 1)
W ′

W
−

2(d− 1)

W

(

f ′ +
W ′

W
f

)

R+ . . .

βµν = f(Φ)

[

Rµν −
1

d
γµνR

]

+ . . .
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Beta-functions

∆µγµν = 2γµν + βµν , ∆µΦ = βΦ

βΦ = −2(d− 1)
W ′

W
−

2(d− 1)

W

(

f ′ +
W ′

W
f

)

R+ . . .

βµν = f(Φ)

[

Rµν −
1

d
γµνR

]

+ . . .

• To zeroth order we recover the results of the homogeneous

calculation

• The metric gets an anomalous change beyond a Weyl rescaling

due to the curvature terms. This resembles the case of Ricci

flows.
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Two-Derivavive Generating Functional

• The renormalized partition function takes has the local

covariant form:

S(ren) ≡ logZQFT [γ,Φ] =

∫

ddx
√
γ
[

Z0(Φ) + Z1(Φ)R+ Z2(Φ)(∂Φ)
2
]

+. . .

• Zi(Φ) are complicated but known functions of Φ, written in

terms of W and f . Up to the three scheme-dependent

multiplicative quantities Di, their functional form is universal.

• logZ obeys the local RG-invariance equation

(

2γµν
δ

δγµν
− βµν

δ

δγµν
− βΦ

δ

δφ

)

logZ = Anomaly

with the holographic β-functions appearing.
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Conclusion and Open Questions

• AdS/CFT: a dynamical theory for QFT sources

• Local RG flow equations arise from Einstein equations. How

exactly does the IR regularity condition select a solution?

• Ongoing work trying to understand how geometry emerges

from field theory side (work by S.S. Lee)

• Relation with with the Wilsonian framework ? (work by

Polchinski and Heemskerk)

• Relation between HRG and ERG ?

• The flow equations are a rewriting of Einstein’s equations, and

are cast in a form that resembles the conformal conditions in

σ-models. What are the fixed points of these generalised flows?

what is their physical meaning ?

• The formalism for the derivative expansion is limited to

solutions built around a Poincaré invariant vacuum state. Can

we gereralize to less symmetric cases (e.g. black holes) ?
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Wilsonian picture

So far we have computed the quantum effective action by integrating

the solution from a UV cutoff to the IR.
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Wilsonian picture

So far we have computed the quantum effective action by integrating

the solution from a UV cutoff to the IR.

What about the Wilsonian action?
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