Fermionic functional renormalization group approach to antiferromagnetically ordered phases

Stefan A. Maier

Institute for Theoretical Solid State Physics, RWTH Aachen

in collaboration with Andreas Eberlein and Carsten Honerkamp

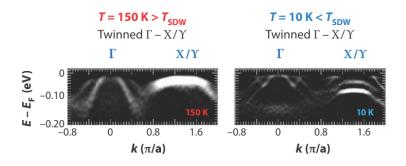
Phys. Rev. B 90, 035140 (2014)

Sept. 24th 2014 7th ERG Conference, Lefkada, Greece

Thanks to

- K.-U. Giering, T. Holder, W. Metzner, B. Obert, M. Salmhofer, and M. M. Scherer for discussions,
- the DFG for financial support through FOR 723

Introduction - Spin-density wave



ARPES measurements on BaFe₂As₂¹

¹Lu et al. 2012.

Previous work

fRG studies of spontaneous symmetry breaking

cf. plenary talk by Andreas Eberlein tomorrow

- reduced mean-field models²
- fermionic fRG for a singlet superconductor³
- channel-decomposed study of singlet superconductors⁴

${\sf Our}\;{\sf study}^5$

channel-decomposed fRG approach to AF phases

²Gersch et al. 2005; Salmhofer et al. 2004; SM and Honerkamp 2012.

³Gersch, Honerkamp, and Metzner 2008.

⁴Eberlein and Metzner 2013a,b.

⁵SM, Eberlein, and Honerkamp 2014.

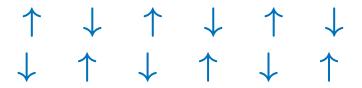
Outline

fRG scheme for Antiferromagnetism

Parametrization Ward identity and relation to mean-field

Numerical results for a two-pocket model

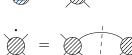
fRG scheme for Antiferromagnetism



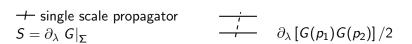
└_1PI scheme

One-particle irreducible fRG scheme⁷ (in equilibrium)

Katanin truncation⁶



describing the lowering of the IR cutoff λ



⁶Katanin 2004. ⁷Metzner et al. 2012.

RWTHAACHEN

Parametrization

SDW phase – Symmetries

Trigger the symmetry breaking

 apply a small external staggered magnetization

$$\Delta_0 \sum_{x,y} (-1)^{x+y} \, \bar{\Psi}_{x,y} \sigma_z \Psi_{x,y}$$

$$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \\ \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$$

Parametrization

SDW phase – Symmetries

Trigger the symmetry breaking

 apply a small external staggered magnetization

$$\Delta_0 \sum_{x,y} (-1)^{x+y} \, \bar{\Psi}_{x,y} \sigma_z \Psi_{x,y}$$

 $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$ $\downarrow \uparrow \downarrow \uparrow \downarrow$

Broken symmetries

- translational
- spin SU(2)

Residual $U_z(1)$ spin symmetry

• spin rotation about z axis $\Psi \rightarrow e^{i\alpha\sigma_z} \Psi$

Parametrization

SDW phase – Symmetries

Trigger the symmetry breaking

 apply a small external staggered magnetization

$$\Delta_0 \sum_{x,y} (-1)^{x+y} \, \bar{\Psi}_{x,y} \sigma_z \Psi_{x,y}$$

$$\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow$$
$$\downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$$

Broken symmetries

- translational
- spin SU(2)

Residual $U_z(1)$ spin symmetry

- spin rotation about z axis $\Psi \rightarrow e^{i\alpha\sigma_z} \Psi$
- AF residual composite symmetry
 - translation by one site then spin flip $\Psi(k) \rightarrow e^{ik_x} \sigma_x \Psi(k)$

RWITHAACHEN

Parametrization

Channel decomposition⁸

- decompose the interaction into different channels Φ_X (pairing, CDW, magnetic)
- magnetic channel splits: S_z^2 and $S_x^2 + S_y^2$ differ

⁸Husemann and Salmhofer 2009; Karrasch et al. 2008.

- Parametrization

Exchange parametrization⁸

т

$$\Phi_X(I, q, q') = \sum_{m,n} f_m(q) P^X_{m,n}(I) f_n(q')$$

- decompose the interaction into different channels Φ_X (pairing, CDW, magnetic)
- magnetic channel splits: S_z^2 and $S_x^2 + S_y^2$ differ

⁸Husemann and Salmhofer 2009.

 parametrize Φ_X in a Hubbard-Stratonovich spirit

- Parametrization

Exchange parametrization⁸

т

$$\Phi_X(I,q,q') = \sum_{m,n} f_m(q) P^X_{m,n}(I) f_n(q') \approx P^X(I)$$

- decompose the interaction into different channels Φ_X (pairing, CDW, magnetic)
- magnetic channel splits: S_z^2 and $S_x^2 + S_y^2$ differ

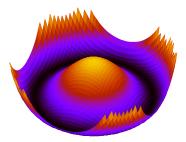
⁸Husemann and Salmhofer 2009.

- parametrize Φ_X in a Hubbard-Stratonovich spirit
- only retain constant fermion-boson vertices

- Parametrization

Goldstone theorem

Potential for order parameter

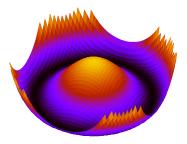


 $\Delta_0 \neq 0$ corresponds to a tilt

- Parametrization

Goldstone theorem

Potential for order parameter



$\Delta_0 \neq 0$ corresponds to a tilt

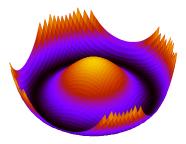
Radial mode

- massive bosons
- regular S²_z interaction for fermions
- 'Radial vertex'

- Parametrization

Goldstone theorem

Potential for order parameter



 $\Delta_0 \neq 0$ corresponds to a tilt

Radial mode

- massive bosons
- regular S²_z interaction for fermions
- 'Radial vertex'

Angular mode(s)

- massless bosons
- ► singular S²_x + S²_y interaction for fermions
- 'Goldstone vertex'

Parametrization

Approximations – Overview

Essential quantities retained

- AF gap $\Delta(k)$
- Radial, Goldstone, CDW and singlet pairing interactions (exchange propagators M_z(I), M_{xy}(I), N(I) and D(I))

Parametrization

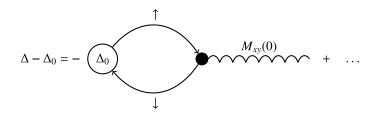
Approximations – Overview

Essential quantities retained

- AF gap $\Delta(k)$
- Radial, Goldstone, CDW and singlet pairing interactions (exchange propagators M_z(I), M_{xy}(I), N(I) and D(I))
- anomalous interactions would be needed if the normal self-energy was included

WI and RPA

SU(2) Ward identity



Spontaneous symmetry breaking

- ▶ limit $\Delta_0 \rightarrow 0$
- $M_{xy}(0) \rightarrow \infty$ as required by the Goldstone theorem

Measure for the quality of approximations

└─WI and RPA

Random phase approximation

Neglect the coupling between different interaction channels.

WI and RPA

Random phase approximation

The mean-field gap equation

$$\Delta = U \int\! d{f k}\, rac{\Delta}{\sqrt{\epsilon({f k})^2+\Delta^2}}$$

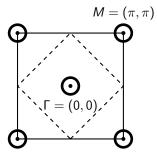
is recovered

and the WI is fulfilled exactly.

Numerical Results for a Two-Pocket Model

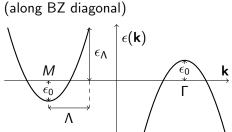
Two-pocket model⁹ in 2D

Fermi surface



Interaction featureless, of strength U

Dispersion



Simplifications

- circular symmetry
- constant DOS

RWTHAACHEN

⁹Chubukov, Efremov, and Eremin 2008.

Implementation

fRG setup

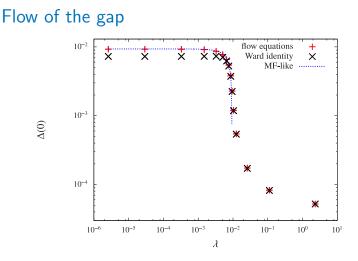
Additive frequency cutoff

$$ik_0
ightarrow i\,\mathrm{sign}(k_0)\,\sqrt{k_0^2+\lambda^2}$$

Momentum parametrization

$$P(l) = \frac{1}{m_P(l_0) \left[1 + n_P(l_0) \mathbf{I}^2\right]}$$

m_P and *n_P* live on fixed frequency grid interpolated elsewhere



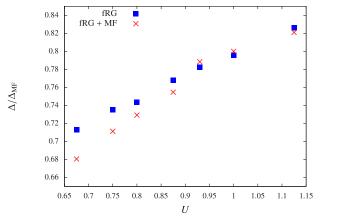
Parameters: U = 1.0, $\epsilon_{\Lambda} = 0.58$, $\epsilon_{0} = 3.0 \cdot 10^{-2}$

Flow of the exchange propagators



Parameters: U = 1.0, $\epsilon_{\Lambda} = 0.58$, $\epsilon_0 = 3.0 \cdot 10^{-2}$

Comparison to fRG+MF¹⁰



Parameters: $\epsilon_{\Lambda} = 0.58$, $\epsilon_0 = 3.0 \cdot 10^{-2}$

¹⁰Wang, Eberlein, and Metzner 2014.

RWTHAACHEN

Summary

Our fRG approach

- works at least on a qualitative level
- predicts a reduction of the mean-field gap

Summary

Our fRG approach

- works at least on a qualitative level
- predicts a reduction of the mean-field gap

Comparison to fRG+MF

- ▶ flow of the gap MF-like below λ_c
- good agreement with fRG+MF

Summary

Our fRG approach

- works at least on a qualitative level
- predicts a reduction of the mean-field gap

Comparison to fRG+MF

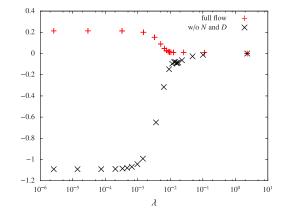
- ▶ flow of the gap MF-like below λ_c
- good agreement with fRG+MF

Outlook

▶ Purely fermionic fRG for AF+*d*SC

Importance of CDW and pairing fluctuations

 $1-\Delta_{WI}/\Delta$



- CDW and pairing channels decouple at RPA level.
- Beyond mean-field, however they are crucial.

RWITHAACHEN