A beyond the local potential approximation study for the dynamical chiral symmetry breaking in effective model of QCD

MASATOSHI YAMADA (KANAZAWA UNIVERSITY)

COLLABORATORS: KEN-ICHI AOKI AND DAISUKE SATO

Outline

- 1. Introduction
 - Phase structure
 - Why use Renormalization Group?
- 2. Our analysis method for Dynamical Chiral Symmetry Breaking (DχSB)
 - Quark-Meson model
 - Our approach
- 3. Numerical Results
 - LPA case
 - Beyond LPA case
- 4. Summary

Introduction

Our aims:

- Approach to $D\chi$ SB at finite temperature and density.
- Beyond the mean field approximation.

Baryon density

Analysis Method

Model

Quark-Meson model with O(4) symmetry

$$\Gamma_{\Lambda} = \int_{x} \left\{ Z_{\psi}(\Phi^{2})\bar{\psi}(\gamma^{\mu}\partial_{\mu} + i\gamma_{0}\mu)\psi + \frac{1}{2}Z_{\phi}(\Phi^{2})(\partial_{\mu}\Phi)^{2} + U(\Phi^{2}) + \frac{\bar{h}(\Phi^{2})}{\sqrt{2}}\bar{\psi}(\sigma + i\gamma_{5}\tau^{i}\pi_{i})\psi \right\}$$

$$\Phi^2 = \sigma^2 + \vec{\pi}^2$$

LPA: $Z_{\psi} = 1$, $Z_{\phi} = 1$ at all RG scale.

The fermion field has degrees of freedom of color.

Background field method

Split up the meson field into a background field ϕ and a fluctuation field φ , i.e. $\Phi = \phi + \varphi$.

Expand couplings around the background field ϕ :

$$U(\Phi^{2}) = U(\phi^{2}) + U''(\phi^{2})\varphi^{2} + \mathcal{O}(\varphi^{4})$$

$$\bar{h}(\Phi^{2}) = \bar{h}(\phi^{2}) + \bar{h}''(\phi^{2})\varphi^{2} + \mathcal{O}(\varphi^{4})$$

$$Z_{\psi}(\Phi^{2}) = Z_{\psi}(\phi^{2}) + Z''_{\psi}(\phi^{2})\varphi^{2} + \mathcal{O}(\varphi^{4})$$

$$Z_{\phi}(\Phi^{2}) = Z_{\phi}(\phi^{2}) + Z''_{\phi}(\phi^{2})\varphi^{2} + \mathcal{O}(\varphi^{4})$$

✓ Couplings depend on the background field ϕ . ✓ Neglect the derivative terms of \overline{h} , Z_{ϕ} , Z_{ψ} for simplicity.

Meaning of
$$h(\phi^2)$$

"Yukawa coupling $h(\phi^2)$ " includes higher order operators:

$$\bar{h}(\phi^2) = \bar{h}^{(0)} + \bar{h}^{(2)}\phi^2 + \bar{h}^{(4)}\phi^4 + \cdots$$

✓Yukawa interactions

$$\frac{\bar{h}(\phi^2)}{\sqrt{2}}\bar{\psi}(\sigma+i\gamma_5\sigma^i\pi_i)\psi = \frac{\bar{h}^{(0)}}{\sqrt{2}}\bar{\psi}(\sigma+i\gamma_5\sigma^i\pi_i)\psi + \frac{\bar{h}^{(2)}}{\sqrt{2}}\phi^2\bar{\psi}(\sigma+i\gamma_5\sigma^i\pi_i)\psi + \cdots$$

RG equations

Wetterich equation:

$$\partial_t \Gamma_{\Lambda} = \frac{1}{2} \operatorname{tr} \left[\left(\frac{\delta^2}{\delta \varphi^2} \Gamma_{\Lambda} + R^{\phi}_{\Lambda} \right)^{-1} \cdot (\partial_t R^{\phi}_{\Lambda}) \right] - \operatorname{tr} \left[\left(\frac{\delta}{\delta \bar{\psi}} \Gamma_{\Lambda} \frac{\delta}{\delta \psi} + R^{\psi}_{\Lambda} \right)^{-1} \cdot (\partial_t R^{\psi}_{\Lambda}) \right]$$

Use 3d optimized cut-off function:

$$R_{\Lambda}^{\phi} = \mathbf{p}^2 \left(\frac{\Lambda^2}{\mathbf{p}^2} - 1\right) \theta(1 - \frac{\mathbf{p}^2}{\Lambda^2}) \qquad R_{\Lambda}^{\psi} = \mathbf{p} \left(\frac{\Lambda}{|\mathbf{p}|} - 1\right) \theta(1 - \frac{\mathbf{p}^2}{\Lambda^2})$$

 ∂U

Obtain four RG equations:

$$\partial_t \mathcal{A}_{\Lambda}(\phi^2) = \beta_{\mathcal{A}}(\phi^2, U, U', U'', Z_{\phi}, Z_{\psi}, h; \Lambda, T, \mu) \qquad U' \equiv \frac{\partial U}{\partial \phi^2}$$
$$\mathcal{A} \in \{U(\phi^2), h(\phi^2), Z_{\phi}(\phi^2), Z_{\psi}(\phi^2)\}$$

Solving RG equations

How to solve the RG equations?

We solve numerically RG equations as the coupled partial differential equations.

In the numerical calculations, we use the grid method:
 The derivatives U' and U'': the 7-point formula
 The derivative by scale : fourth-order Runge-Kutta method

Setting initial values:

- ✓ The field renormalization factors $Z_{\psi} = Z_{\phi} = 1$ at $\Lambda = \Lambda_0$.
- ✓ The initial values of \overline{h} , Λ_0 , $U(\phi^2)$ yield a vacuum pion decay constant of f_π ~87 MeV.

✓ Chiral limit

Numerical Results

RG evolution of potential in LPA without running of Yukawa coupling

RG evolution of potential in LPA without running of Yukawa coupling

Chiral phase diagram in LPA case

Phase diagram in LPA vs. beyond

- The chiral restoration temperature and density become lower than LPA case.
- In our method, we could find the critical end point.
- However, we could not evaluate low temperature/high density region.

Anomalous dimension for boson

Summary

We investigate Quark-Meson model with O(4) at finite temperature and density.

✓ LPA

• $T_{\rm cri} = 52 \text{ MeV } \mu_{\rm cri} = 251 \text{ MeV}$

B. J. Schaefer, J. Wambach Nucl. Phys. A757 479

- ✓ Beyond LPA
 - $T_{\rm cri} = 61 \text{ MeV } \mu_{\rm cri} = 180 \text{ MeV}$
- We want to improve the analysis methods.
 - How to investigate the low-temperature and high density region?
- Extend Quark-Meson model to bosonized NJL model.