Sarma phase in relativistic and non-relativistic systems

Tina Katharina Herbst

In Collaboration with

I. Boettcher, J. Braun, J. M. Pawlowski, D. Roscher, N. Strodthoff, L. von Smekal and C. Wetterich

arXiv:1409.5232 and arXiv:1409.5070

ERG 2014

Lefkada, Greece

September 22 - 26, 2014

Relativistic System	Unitary Fermi Gas	BCS-BEC Crossover	Conclusions & Outlook

The Sarma Phase

[Sarma (1963)]

homogeneous superfluid phase with gapless fermionic excitations

▶ 2 fermion species with spin imbalance

$$\delta\mu = \frac{\mu_1 - \mu_2}{2}$$

► Dispersion relation [lowest branches]

$$E_p^{(\pm)} = \sqrt{\varepsilon_p^2 + \Delta^2} \pm \delta \mu$$

 $[\varepsilon_p \dots$ microscopic dispersion relation; $\Delta \dots$ pairing gap]

Relativistic System U	Jnitary Fermi Gas	BCS-BEC Crossover	Conclusions & Outlook

The Sarma Phase

[Sarma (1963)]

homogeneous superfluid phase with gapless fermionic excitations

▶ 2 fermion species with spin imbalance

$$\delta\mu = \frac{\mu_1 - \mu_2}{2}$$

Dispersion relation

$$E_{\rho}^{(\pm)} = \sqrt{\varepsilon_{\rho}^2 + \Delta^2} \pm \delta \mu$$

 $[\varepsilon_{\mathcal{D}}...$ microscopic dispersion relation; $\Delta...$ pairing gap]

► Sarma: $\Delta > 0$ and lowest branch below zero

Relativistic System Uni	nitary Fermi Gas	BCS-BEC Crossover	Conclusions & Outlook

The Sarma Phase

[Sarma (1963)]

homogeneous superfluid phase with gapless fermionic excitations

▶ 2 fermion species with spin imbalance

$$\delta\mu = \frac{\mu_1 - \mu_2}{2}$$

Dispersion relation [lowe

[lowest branches]

$$E_p^{(\pm)} = \sqrt{\varepsilon_p^2 + \Delta^2} \pm \delta \mu$$

 $[\varepsilon_p \dots$ microscopic dispersion relation; Δ ... pairing gap]

- $\blacktriangleright\,$ Sarma: $\Delta>0$ and lowest branch below zero
- non-monotonous behavior of occupation numbers
- ► T > 0: Fermi surfaces smeared out → no sharp distinction
 - \rightarrow Sarma *crossover*

zero-crossing of the lower branch if

$$\delta\mu>\min_p\sqrt{\varepsilon_p^2+\Delta^2}$$

assume:

$$\min_{p} \varepsilon_{p} = 0 \implies \delta \mu_{c} > \Delta_{c}$$

[NB: not valid on BEC-side, where $\mu < 0$]

zero-crossing of the lower branch if

$$\delta\mu>\min_p\sqrt{\varepsilon_p^2+\Delta^2}$$

assume:

$$\min_{p} \varepsilon_{p} = 0 \quad \Longrightarrow \quad \delta \mu_{c} > \Delta_{c}$$

[NB: not valid on BEC-side, where $\mu\,<\,0]$

 <u>Second Order Transition</u>: Condition always fulfilled

zero-crossing of the lower branch if $\sqrt{2+\Lambda^2}$

r

$$\delta \mu > \min_{
ho} \sqrt{arepsilon_{
ho}^2 + \Delta^2}$$

assume:

$$\min_{\rho} \varepsilon_{\rho} = 0 \quad \Longrightarrow \quad \delta \mu_{c} > \Delta_{c}$$

[NB: not valid on BEC-side, where $\mu < 0$]

- <u>Second Order Transition</u>: Condition always fulfilled
- First Order Transition:
 Δ_c vs δμ_c decides
 - $\triangleright \ \Delta_c < \delta \mu_c$: Sarma phase

E

A Simple Criterion for the Sarma Phase

zero-crossing of the lower branch if

r

$$\delta \mu > \min_p \sqrt{\varepsilon_p^2 + \Delta^2}$$

assume:

$$\min_{p} \varepsilon_{p} = 0 \quad \Longrightarrow \quad \delta \mu_{c} > \Delta_{c}$$

- Second Order Transition: Condition always fulfilled
- ▶ First Order Transition: Δ_c vs $\delta\mu_c$ decides
 - $\triangleright \Delta_c < \delta \mu_c$: Sarma phase
 - $\triangleright \Delta_c > \delta \mu_c$: no Sarma phase

zero-crossing of the lower branch if $\sqrt{2}$

n

$$\delta\mu>\min_p\sqrt{\varepsilon_p^2+\Delta^2}$$

assume:

$$\min_{\rho} \varepsilon_{\rho} = 0 \quad \Longrightarrow \quad \delta \mu_{c} > \Delta_{c}$$

[NB: not valid on BEC-side, where $\mu < 0$]

- <u>Second Order Transition</u>: Condition always fulfilled
- ► First Order Transition: Δ_c vs δμ_c decides
 - $Derta \ \Delta_{c} < \delta \mu_{c}$: Sarma phase
 - $Derta \ \Delta_c > \delta \mu_c$: no Sarma phase

Talk Outline

- 1 Motivation: Sarma Phase in a Relativistic System
- 2 A Potential Non-Relativistic Analog: The Unitary Fermi Gas
- 3 Sarma Phase in the BCS-BEC Crossover
- 4 Conclusions & Outlook

Sarma phase in relativistic and non-relativistic systems

A Relativistic System: Quark-Meson Model at Finite Isospin Chemical Potential

[Remember Monday's talks ? e.g. W. Weise, B.-J. Schaefer, N. Strodthoff]

[F. Rennecke, A. Juricic, N. Khan, J. Luecker, ...]

Sarma phase in relativistic and non-relativistic systems

- ▶ 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$
- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I : imbalance between up and down quarks

- ▶ 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$
- ▶ $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I : imbalance between up and down quarks
- BCS-BEC crossover analogy
 - $|\mu_1| > m_{\pi}/2$: pions condense in a Bose condensate
 - $arphi ~|\mu_I| \gg m_{\pi}$: Cooper-pairing of quarks and antiquarks

[Kamikado, Strodthoff, von Smekal, Wambach (2013)]

- ▶ 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$
- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I : imbalance between up and down quarks

- BCS-BEC crossover analogy
- ▶ 2 effects: chiral symmetry breaking & pion condensation

- ▶ 2 flavors of quarks, $\psi = (u, d)^T$, coupled to mesons, $\sigma, \vec{\pi} = (\pi_0, \pi_+, \pi_-)$
- $\mu_q = \mu_B/3$: imbalance between quarks and antiquarks
- μ_I : imbalance between up and down quarks
- BCS-BEC crossover analogy
- ▶ 2 effects: chiral symmetry breaking & pion condensation

- fix $\mu_I = m_\pi > m_\pi/2$ (pion condensation possible)
- ▶ vary μ_q
- ► order parameter: $\Delta^2 \sim \pi_+ \pi_-$
- mean field approximation: no bosonic fluctuations

Including Fluctuations: Functional Renormalization Group

- ► bosonic fluctuations included (in LPA) $\Rightarrow \partial_t U_k(\chi, \Delta)$
- ▶ solve on 2-dimensional grid
 - $\,\triangleright\,\,$ chiral SB ($\sim\,\chi)$ & pion condensation ($\sim\,\Delta)$
 - $\triangleright\;$ resolve first and second order transitions

Including Fluctuations: Functional Renormalization Group

- ► bosonic fluctuations included (in LPA) $\Rightarrow \partial_t U_k(\chi, \Delta)$
- ► solve on 2-dimensional grid
 - $\triangleright \text{ chiral SB } (\sim \chi) \& \text{ pion condensation } (\sim \Delta)$ $\triangleright \text{ resolve first and second order transitions}$

- fluctuations strongly modify phase structure
- two transition branches at low T (first and second order)
- ▶ Sarma phase down to T = 0

A Potential Non-Relativistic Analog: The Imbalanced Unitary Fermi Gas

[cf. talks by I. Boettcher, D. Roscher, ...]

Unitary Fermi Gas

ultracold two-component fermions close to a broad Feshbach resonance

- ▶ 2 fermion species, $\psi = (\psi_1, \psi_2)^T$
- \blacktriangleright bosonization in particle-particle channel: $\phi \sim \psi_1 \psi_2$ [diatomic molecule; Cooper pair]
- unitary regime: *s*-wave scattering length diverges, $a^{-1} = 0$; strongly coupled

Unitary Fermi Gas

ultracold two-component fermions close to a broad Feshbach resonance

- ▶ 2 fermion species, $\psi = (\psi_1, \psi_2)^T$
- \blacktriangleright bosonization in particle-particle channel: $\phi \sim \psi_1 \psi_2$ [diatomic molecule; Cooper pair]
- unitary regime: s-wave scattering length diverges, $a^{-1} = 0$; strongly coupled

- ▶ $\mu > 0$: condensation
- ► order parameter: $\Delta^2 \sim \phi \phi^*$
- mean field approximation: no bosonic fluctuations
- phase structure very similar to relativistic model

Including Fluctuations: Functional Renormalization Group

bosonic order-parameter fluctuations included

$$\Rightarrow \partial_t U_k(\Delta), \ \partial_t g^2 = \eta_\phi g^2$$

[g...Feshbach coupling]

 solve flow equation on a grid [Boettcher, Braun, TKH, Pawlowski, Roscher, Wetterich (2014)]

 \rightarrow talk by Dietrich Roscher

Including Fluctuations: Functional Renormalization Group

► bosonic order-parameter fluctuations included

$$\Rightarrow \partial_t U_k(\Delta), \ \partial_t g^2 = \eta_\phi g^2$$

[g...Feshbach coupling]

 solve flow equation on a grid [Boettcher, Braun, TKH, Pawlowski, Roscher, Wetterich (2014)]

 \rightarrow talk by Dietrich Roscher

Fluctuations:

- ► T_c down
- ► critical imbalance δμ_c(T = 0) grows
- ► agreement with experiment & Monte Carlo

[Ku et al. (2012), Navon et al. (2013)] [Goulko and Wingate (2010)]

250

200

100

50

T [MeV] 150 2nd

1st CP

Sarma

Including Fluctuations: Functional Renormalization Group

bosonic order-parameter fluctuations included

$$\Rightarrow \partial_t U_k(\Delta), \ \partial_t g^2 = \eta_\phi g^2$$

[g... Feshbach coupling]

solve flow equation on a grid [Boettcher, Braun, TKH, Pawlowski, Roscher, Wetterich (2014)] \rightarrow talk by Dietrich Roscher

Differences to the **Relativistic System:**

NO splitting of transition line

OMiso - FRG

50

100 150 200 250

μ_α [MeV]

- ▶ NO Sarma phase at T = 0
- Sarma phase SHRINKS

Sarma Phase in the BCS-BEC Crossover

Sarma phase in relativistic and non-relativistic systems

Tina K. Herbst (ITP Heidelberg)

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- $\blacktriangleright~\rightarrow$ study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0)$ at $\mathcal{T}=0$

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- ▶ → study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0$) at T = 0

MFA:

- Sarma phase at T = 0 occurs ...
- ► ... but on <u>BEC-side</u> of the crossover

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- ▶ → study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0$) at T = 0

MFA:

- Sarma phase at T = 0 occurs ...
- ► ... but on <u>BEC-side</u> of the crossover
- ► Quantum Critical Point → if transition of second order, there is always a Sarma phase!

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- ▶ → study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0$) at T = 0

MFA:

- Sarma phase at T = 0 occurs ...
- ► ... but on <u>BEC-side</u> of the crossover
- ► Quantum Critical Point → if transition of second order, there is always a Sarma phase!
- Impact of fluctuations ?

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- ▶ → study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0$) at T = 0

FRG:

- transition line barely changed
- ► Sarma onset moves *right*

[MFA: open symbols; FRG: full symbols]

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- ▶ → study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0$) at T = 0

FRG:

- transition line barely changed
- ► Sarma onset moves *right*
- ▶ QCP moves right

[MFA: open symbols; FRG: full symbols]

- ▶ Estimate possible: relativistic system slightly on <u>BCS-side</u>
- ▶ → study full imbalanced BCS-BEC crossover ($a^{-1} \neq 0$) at T = 0

FRG:

- transition line barely changed
- ► Sarma onset moves *right*
- QCP moves right
- ▶ <u>NO</u> Sarma on BCS-side!

[MFA: open symbols; FRG: full symbols]

D			~	
Ke	lativ	TIC.	51	/stem
			-	

A Second Look at the Two Systems

- ▶ rel. system: additional SU(2)_L × SU(2)_R chiral symmetry
- ▶ d.o.f. do not match !

A Second Look at the Two Systems

- ▶ rel. system: additional SU(2)_L × SU(2)_R chiral symmetry
- ▶ d.o.f. do not match !
- ► MF phase structure agrees → discrepancies in fermionic sector subleading
- ► large difference beyond MFA → bosons and their fluctuations crucial !

A Second Look at the Two Systems

- ▶ rel. system: additional SU(2)_L × SU(2)_R chiral symmetry
- ▶ d.o.f. do not match !
- ► MF phase structure agrees → discrepancies in fermionic sector subleading
- ► large difference beyond MFA → bosons and their fluctuations crucial !

A Proposition

non-relativistic system with four fermion species and interactions

$$\hat{\mathcal{H}} \sim \lambda \Big[(\psi_1 \psi_2)^{\dagger} \psi_1 \psi_2 + (\psi_3 \psi_2)^{\dagger} \psi_3 \psi_2 + (\psi_1 \psi_4)^{\dagger} \psi_1 \psi_4 + (\psi_3 \psi_4)^{\dagger} \psi_3 \psi_4$$

- ▶ same $SU(2) \times SU(2)$ symmetry as the rel. system
- ▶ phase structure likely similar
- Sarma phase at T = 0 possible

Relativistic System		Unitary Fermi Gas BCS-BEC Crossover		Conclusions & Outlook	
	Take-home Message	s			
	▶ rel. and non-re	el. systems for BCS	S-BEC crossover similar on	MF-level	
	►but very dif	ferent beyond			
	► bosonic d.o.f.	and their fluctuation	ons essential		

- ▶ rel. system: 'non-trivial' phase structure at low T (Sarma!)
- ▶ non-rel. system:
 - ▷ good agreement with experiment and QMC for UFG
 - Sarma phase at low T only on BEC-side
- ▶ proposition for a non-rel. system that might be more similar to the rel. one

Where to go from here

- Stay Tuned & Thanks ! ▶ full imbalanced BCS-BEC crossover & QCP
- ▶ mass imbalance [Braun, Roscher]
- ► lower dimensions [Boettcher]

Backup: Quark-Meson Model

$$\begin{split} \mathcal{L}_{\text{QMiso}} &= \bar{\psi} \left(\not \! \partial + g (\sigma + i \gamma^5 \vec{\pi} \vec{\tau}) - \gamma_0 \mu_q - \gamma_0 \tau_3 \mu_I \right) \psi \\ &+ \frac{1}{2} (\partial_\nu \sigma)^2 + \frac{1}{2} (\partial_\nu \pi_0)^2 + U(\chi, \rho) - c\sigma \\ &+ \frac{1}{2} (\partial_\nu + 2\mu_I \delta^0_\nu) \pi_+ (\partial_\nu - 2\mu_I \delta^0_\nu) \pi_- \,, \end{split}$$

- ► 2 flavors
- quark (μ_q) and isospin (μ_l) chemical potentials
- ▶ $SU(2)_L \times SU(2)_R \times U(1)_V$ symmetry
- $\blacktriangleright\,$ chiral symmetry breaking: $\chi\sim \langle\bar\psi\psi\rangle$
- ▶ pion condensation: $\Delta^2 = g^2 \rho = g^2 \pi_+ \pi_-$

Backup: FRG for the BCS-BEC Crossover

[Gurarie, Radzihovski (2007); Zwerger (2012); Diehl, Wetterich (2007)]

$$\begin{split} \mathcal{L}_{\textit{UFG}} &= \sum_{\sigma=1,2} \psi_{\sigma}^* \Big(\partial_{\tau} - \frac{\nabla^2}{2M_{\sigma}} - \mu_{\sigma} \Big) \psi_{\sigma} + g \Big(\phi^* \psi_1 \psi_2 + \text{h.c.} \Big) \\ &+ \phi^* \Big(Z_{\phi} \partial_{\tau} - A_{\phi} \frac{\nabla^2}{4M} \Big) \phi + \nu_{\Lambda} \phi^* \phi \,. \end{split}$$

- ▶ 2 species of fermions, $\sigma = 1, 2$
- ▶ bosonization: φ ∼ ψ₁ψ₂ (particle-particle channel)
- ▶ spin imbalance by different chemical potentials μ_1, μ_2
- ▶ $\nu_{\Lambda} \sim a^{-1}$ fine tuned to fix scattering length
- condensation: $\Delta^2 = g^2 \rho = g^2 \phi^* \phi$

Renormalization of the Propagators

$$egin{array}{rcl} P_{\psi\sigma,k}(iq_0,ec{q}) &=& iq_0+q^2-\mu_\sigma\,, \ P_{\phi,k}(iq_0,ec{q}) &=& A_{\phi,k}\left(iq_0+rac{q^2}{2}
ight)\,. \end{array}$$

Backup: Renormalization and the Sarma Condition

Fluctuations modify chemical potentials and can thus influence the Sarma criterion, $\Delta=\delta\mu$.

- \blacktriangleright polaron/FRG studies of balanced UFG: fluctuations increase μ
- ▶ estimate: $\mu_{\sigma, eff} \simeq \mu_{\sigma} + 0.6 \, \mu_{\bar{\sigma}}$

 $[\mu_{\bar{\sigma}}\dots$ chem. pot. of other species]

- ▶ for imbalance: $\delta \mu_{\rm eff} = (\mu_{1,\rm eff} \mu_{2,\rm eff})/2 \simeq 0.4 \, \delta \mu$
- $\blacktriangleright \ \rightarrow$ Sarma criterion even less likely fulfilled
- ▶ here: unren. Sarma criterion not fulfilled at $T = 0 \Rightarrow$ ren. criterion not fulfilled either

