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Why membranes?
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Effective vs fundamental

Effective:

Fundamental: String theory, Brane-models.
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A microscopic model

Imagine a membrane as realized through the bonding of monomers:

.
. . .
I
'

To fix a scale, let the bonds length be of order 1um.
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A macroscopic model

At higher scales, say 2 10um — 1nm, the membrane admits
an effective continuous description ISO(D)-symmetric:

r:RY 5 RP

RD

The “physical” case corresponds to D = 3 and d = 2.
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A bit of geometry

Induced metric:
8ab = aarﬂabru(suy

The geometry is characterized by both intrinsic and extrinsic
curvatures:
0a20pr* = Kjpnt' + T, p0cr*

Framing of the normal bundle is controlled by a connection:

i v
A'j=n; 6anj O
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Order parameters |

Ising-like normals (flat vs crumpled):

The orientational order is controlled by the extrinsic curvature:

K2 ~ (82,,#)2 ~ (ani)Z
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A word on perturbation theory

Rigidity of the membrane is generally controlled by

Oaaﬁr“

Therefore in perturbation theory and for the physical case € = 2,

because the upper critical dimension is d = 4.

We need a non-perturbative method to draw phase-diagrams.

1 -1
kakl'k = ETI‘ (Ff(z) + Rk) kakRk
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Order parameters Il

Local order:

Order parameters for the breaking of the internal symmetries.
Ze local order is promoted to SO(2) symmetry in the continuum.

10/28



Microscopic (dis)order

Our membrane is subject only to mechanical stresses and

temperature T.
Microscopically, T is responsible for melting:

At low T we have a crystalline phase: microscopic order.

At high T the bonds melt to fluid phase: microscopic disordered.
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The KTNHY description

tethered fluid

hexatic

Kosterlitz, Thouless '73; Nelson, Halperin '79; Young '79
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Coset models
Embedding's isometries:

ISO(D) :  r* — R(a)!,r” + b
Full symmetry group:

ISO(D) % Ging

Extension is generated breaking (at least) the translations.
Given the unbroken group H D Hp, all the membrane models are
constructed as

ISO(D) X Gint/HO

West '00
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The tethered membrane model |

Each monomer breaks translations fully:
ISO(D)/SO(D)

The order parameters of the broken translations are J,r*.

_ d_(F 2 t 2
SM_-/deQMM)+ﬂ%ﬂ
+u(Bar - 50) + v (Bak - ur)® + .. )
> x: bending rigidity.

» t: tension.

» u and v: Lamé coefficients.

Deformations:; r#* — rt + §r#
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The tethered membrane model 11

M) = / ddx(%(aa(‘)ar)z + Uilor])

Up to 8th order in the derivative expansion:

» Flat phase characterized by critical exponent n = 0.849.
Very good agreement with MC simulations (perturbation
theory: 1~ 0.96).

7 governs in-plane and out-of-plane deformations’ scaling
behavior thanks to long-range order.

» D, ~ 4.5 for a 2nd order PT.
Perturbation theory suggests D, ~ 219.

Essafi, Kownacki, Mouhanna '14
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The fluid membrane model |

Bonds melt, the infinitesimal plaquette r* 4 0, r*dx® breaks:

ISO(D)/SO(d) x SO(D — d)

The order parameter is a frame e,% with g, = ea“ebﬁéaﬁ.

Unbroken translations survive as reparametrization invariance.

Sir] = /ddx\/§<u+ gK2+gR+...>
» k: bending rigidity.
» u: surface tension.
» k: Gaussian rigidity.

Deformations: r* — rt* 4+ 1v20,r* +vin' — r +vin/
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The fluid membrane model Il

_ d Kk 2 Rk
M = /dx¢§@k+2K'+2R)

No evidence for a non-trivial PT for d = 2. The fluid membrane is
always crumpled.

However, interesting relations between the fluid model and 2d
quantum gravity.

Codello, Zanusso '11
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Long-range effects from the melting of the tethered model

Sl = /dzx (eo+%(8ar)2—|—...>

Field dependent transformation to highlight the Goldstones of the
broken rotations of the fluid phase:

Oart — R(EH,0ar”
and functionally integrate them:
wq—/ﬁ&¢t _LRlg
- E\"R o6r A

The fluid description of the tethered model enjoys long range
interactions.
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The hexatic membrane model

Crystalline structure breaks internal rotations:
ISO(D) x SO(d)er /SO(d)diag x SO(D — d)
New order parameter N¢ = cosf e;* + sin § e, (d=2).
d 2 Ka
S[r,N] = L/d_xvﬁ<u+— k2l R4— 2 (VaN)’ .”)

» K, Hexatic rigidity.

David, Guitter, Peliti '87; Park, Lubensky '96; ...
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David’s strategy

N® = cos 8 e1® + sin § ex®:
S[e,r]:/d2x\f{u+ K24 E R+ (8 0+ w,)? }
Complete the square 6 — 0§ — [ AV ,w?:
_ [ B2y Fpy Kag gz, Ka
S[G,r]—/dx\/g{u+2K —|—2R+ 2(830) SRAR}
0 is integrated away (finite renormalization for Ku):

K
M = d B2y Fpy Kaplp
i /dx\/g(‘”Lz +2 LAV NARE )

David '89

20/28



Long-range effects (again)

N induces long range interactions among curvatures.
Analog effects are generated when integrating d.o.f. from tethered

to fluid models.

(Very) schematically:

/+\ /+\

—_— <«
,/<;\\__________\\\//,
The Gaussian curvature is source for a Kosterlitz—Thouless type

transition. Free from Mermin—Wagner theorem.
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Beta functions in the FRG scheme, o =1/x

2+,uk_ 4+,Uzk

kOkfixk = —2fix —
27r,/4+ﬁi—aik 2+Hk+«/4+ﬂi—a7
. (D—*KAOék 2(1 — ay) + afik
kag =
o <4+~2 1+ afig
i 2+ fik =\ [A+ JiE — -
+ i log
VAT = 24 A+ i

Codello, Z. '13
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A 2nd order PT ina=1/k

Non-trivial fixed point a* ~ 1/Ka.
Critical exponent: v ~ 0.37.

Beta function of « for K4 = 1/2,1,2 from bottom:

Ba
Lo

0.5 — /

=05
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Drawing the phase—diagram
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It is extended but not quite

By decreasing K4 the fractal dimension saturates to 2.71 in our

estimate.

Crinkled phase: the long—range interactions stack positive and
negative curvatures together making the (ground state) surface

very fuzzy.

d

241

23F

221

21F
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Cosmology and the Galileon

Galileon theory with symmetry 7(x) — m(x) + bax®* + c:

ﬂﬂ:/ﬁw(;wygwm%h+”)

Interpreted as a DGP brane model g,3 = do3 + OomOg in the
non-relativistic limit (07)% < 1.

In general:

S[n] = /ddx\/E <u+ VK + g/@ + ZR)

The brane is embedded in D = d 4+ 1 dimensions.

de Rham, Tolley '10; Brouzakis, Codello, Tetradis, Z. '13
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Non-perturbative renormalization of the Galileon

Codello, Tetradis, Z. '12
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Conclusions

v

v

Melting of a crystalline surface is driven by long-range
interactions to a non-trivial phase.

v

Rich physical content.

v

Much more phenomenology to be captured.
Prospects

» Defects/disinclinations.

» Self-avoidance.

2d extended objects: microscopic order = macroscopic phase.
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