Higher spins, momenta expansion and the fRG

L. Zambelli

TPI Jena

ERG 2014, Lefkada, September 26, 2014

A systematic truncation scheme for the fRG

L. Zambelli

TPI Jena

ERG 2014, Lefkada, September 26, 2014

One more Hamiltonian fRG

L. Zambelli

TPI Jena

ERG 2014, Lefkada, September 26, 2014

Polchinski's Equation

Polchinski's equation

$$\dot{S}[\phi] = \frac{1}{2} \int_{xy} \frac{\delta S[\phi]}{\delta \phi(x)} \dot{C}(x-y) \frac{\delta S[\phi]}{\delta \phi(y)} - \frac{1}{2} \int_{xy} \frac{\delta}{\delta \phi(x)} \dot{C}(x-y) \frac{\delta S[\phi]}{\delta \phi(y)}$$

local Lagrangian truncation

$$S_{\Lambda}[\phi] = \int_{X} \mathcal{L}(x, \phi(x), \partial \phi(x), \partial^{2} \phi(x), ...)$$

it comprehends also some nonlocal terms (by Taylor series about x)

Notations

$$\phi_M \equiv \phi_{\mu_1\mu_2...\mu_n}(x) \equiv \partial_{\mu_n}...\partial_{\mu_2}\partial_{\mu_1}\phi(x)$$
 $M \equiv (\mu_1, \mu_2, ...\mu_n), \ n \in \mathbb{N} \qquad (-)^M \equiv (-1)^n$
 $M = () \text{ corresponds to } \phi_M(x) = \phi(x) \text{ and } n = 0$

we use Einstein's summation convention

$$\frac{\delta S}{\delta \phi(x)} = (-)^{M} \partial_{M} \frac{\partial \mathcal{L}}{\partial \phi_{M}}(x) \equiv \frac{\partial \mathcal{L}}{\partial \phi}(x) - \partial_{\mu_{1}} \frac{\partial \mathcal{L}}{\partial \phi_{\mu_{1}}}(x) + \partial_{\mu_{1}} \partial_{\mu_{2}} \frac{\partial \mathcal{L}}{\partial \phi_{\mu_{1}\mu_{2}}}(x) + \dots$$

From S to \mathcal{L}

Right hand side of Polchinski's equation

$$\frac{(-)^N}{2} \left\{ \int_{xy} \frac{\partial \mathcal{L}}{\partial \phi_M}(x) \dot{C}_{M+N}(x-y) \frac{\partial \mathcal{L}}{\partial \phi_N}(y) - \dot{C}_{M+N}(0) \int_x \frac{\partial^2 \mathcal{L}}{\partial \phi_M \partial \phi_N}(x) \right\}$$

no explicit derivatives act on $\mathcal{L}!$

From \mathcal{L} to \mathcal{H}

Replace derivatives with fields at any scale

introduce tensor fields π^M (no M = () from here on)

Covariant Ostrogradsky formalism

$$\mathcal{H}(x,\phi(x),\pi^{M}(x)) = \underset{\phi_{M}}{\text{ext}} \left\{ \pi^{M}(x)\phi_{M}(x) - \mathcal{L}(x,\phi(x),\phi_{M}(x)) \right\}$$

that is

$$\pi^{M}(x) = \frac{\partial \mathcal{L}}{\partial \phi_{M}}(x)$$
 , $\phi_{M}(x) = \frac{\partial \mathcal{H}}{\partial \pi^{M}}(x)$

equations of motion

$$(-)^{M} \partial_{M} \pi^{M}(x) = \frac{\partial \mathcal{H}}{\partial \phi}(x)$$
$$\phi_{M}(x) = \frac{\partial \mathcal{H}}{\partial \pi^{M}}(x)$$

Flow Eq. for \mathcal{H}

Flow equation of the Hamiltonian density

$$\begin{split} &\int_{x} \dot{\mathcal{H}}(x) = -\frac{1}{2} \int_{xy} \frac{\partial \mathcal{H}}{\partial \phi}(x) \dot{C}(x-y) \frac{\partial \mathcal{H}}{\partial \phi}(y) - \frac{1}{2} \dot{C}(0) \int_{x} \frac{\partial^{2} \mathcal{H}}{\partial \phi \partial \phi}(x) \\ &+ \int_{xy} \pi^{M}(x) \dot{C}_{M}(x-y) \frac{\partial \mathcal{H}}{\partial \phi}(y) - \frac{1 + (-)^{M}}{2} \dot{C}_{M}(0) \int_{x} \frac{\partial^{2} \mathcal{H}}{\partial \pi^{L} \partial \phi}(x) \left(\frac{\partial^{2} \mathcal{H}}{\partial \pi \cdot \partial \pi \cdot} \right)^{-1 L M} \\ &- \frac{(-)^{N}}{2} \int_{xy} \pi^{M}(x) \dot{C}_{M+N}(x-y) \pi^{N}(y) + \frac{(-)^{N}}{2} \dot{C}_{M+N}(0) \int_{x} \left(\frac{\partial^{2} \mathcal{H}}{\partial \pi \cdot \partial \pi \cdot} \right)^{-1 M N} (x) \end{split}$$

no derivative of the fields ϕ and π^M appears!

Uniform Hamiltonian Approximation

 ${\cal H}$ does not explicitly depend on x

$$\begin{split} \dot{\mathcal{H}} &= -\frac{1}{2}\dot{\hat{C}}(0) \left(\frac{\partial \mathcal{H}}{\partial \phi}\right)^2 - \frac{1}{2}\dot{C}(0)\frac{\partial^2 \mathcal{H}}{\partial \phi \partial \phi} \\ &- \frac{1 + (-)^M}{2}\dot{C}_M(0)\frac{\partial^2 \mathcal{H}}{\partial \pi^L \partial \phi} \left(\frac{\partial^2 \mathcal{H}}{\partial \pi \cdot \partial \pi \cdot}\right)^{-1\,LM} \\ &+ \frac{(-)^N}{2}\dot{C}_{M+N}(0) \left(\frac{\partial^2 \mathcal{H}}{\partial \pi \cdot \partial \pi \cdot}\right)^{-1\,MN} \end{split}$$

Partial differential eq. for a function of infinitely many higher-spin fields

Momenta Expansion

n-th order: neglect momenta with rank bigger than n

 ${\sf Zeroth\ order} = {\sf full\ dependence\ on\ } \phi = {\sf LPA}$

First order = full dependence on π^μ and ϕ

In generic d: $\mathcal{H}\left(\varpi\equiv\pi^{\mu}\pi_{\mu}/2,\;\phi\right)$

First Order Momenta Expansion

By dropping all higher momenta the flow equation simplifies to

$$\dot{\mathcal{H}} = \frac{K_0}{\Lambda^{2-\eta}} \left(\frac{\partial \mathcal{H}}{\partial \phi} \right)^2 + \Lambda^{d-2+\eta} I_0 \frac{\partial^2 \mathcal{H}}{\partial \phi \partial \phi} - \frac{\Lambda^{d+\eta}}{d} I_1 \mathrm{tr} \left(\frac{\partial^2 \mathcal{H}}{\partial \pi \cdot \partial \pi \cdot} \right)^{-1}$$

Rescaling \mathcal{H} , ϖ and ϕ we remove regulator dependence: $\mathcal{K}_0 = \mathcal{I}_0 = \mathcal{I}_1 = 1$ (not scheme dependence)

Critical Behavior

Dimensionless renormalized fields

$$\mathcal{H} \to \Lambda^d \mathcal{H}$$
 , $\varpi \to \Lambda^{2d_\pi} \varpi$, $\phi \to \Lambda^{d_\phi} \phi$

Demanding
$$[\pi^\mu\phi_\mu]=d$$
: $d_\phi=(d-2+\eta)/2$ $d_\pi=(d-\eta)/2$

$$\dot{\mathcal{H}} = d\mathcal{H} - (d - \eta) \,\varpi \mathcal{H}^{(1,0)} - \left(\frac{d - 2 + \eta}{2}\right) \phi \mathcal{H}^{(0,1)}$$
$$+ \mathcal{H}^{(0,1)2} + \mathcal{H}^{(0,2)} - \frac{1}{d} \left(\frac{d - 1}{\mathcal{H}^{(1,0)}} + \frac{1}{\mathcal{H}^{(1,0)} + 2\varpi \mathcal{H}^{(2,0)}}\right)$$

Special solutions: $\mathcal{H}(\varpi,\phi) = \mathcal{T}(\varpi) - \mathcal{V}(\phi)$

Separable FP

Two equations coupled through η

$$-d\mathcal{V} + \left(\frac{d-2+\eta}{2}\right)\phi\mathcal{V}' + {\mathcal{V}'}^2 - \mathcal{V}'' = -c$$

$$d\mathcal{T} - (d - \eta)\varpi\mathcal{T}' - \frac{1}{d}\left(\frac{d - 1}{\mathcal{T}'} + \frac{1}{\mathcal{T}' + 2\varpi\mathcal{T}''}\right) = c$$

d=3 First equation shows three families of FP solutions $\forall \eta$: Gaußian, Wilson-Fisher, High—Temperature

Y. A. Kubyshin, R. Neves, R. Potting (2001);

H. Osborn and D. E. Twigg (2009);

C. Bervillier (2013)

$\mathsf{FP} \; \mathcal{T}$

Boundary conditions:

$$\mathcal{T}'(0) = \zeta_0$$
,

equivalent to
$$\eta = \partial_t \log Z_\phi$$

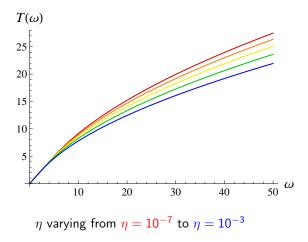
$$\mathcal{T}''(0) = -\frac{d\eta}{d+2}\zeta_0^3$$

from the FP equation

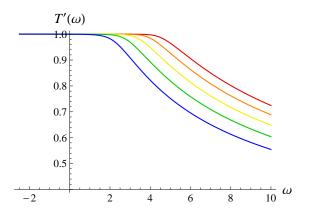
One FP solution
$$\forall \eta \geq 0$$

 ${\mathcal T}$ is linear in ${\varpi}$ only for $\eta=0$

$$d = 3$$



d = 3



 η varying from $\eta = 10^{-7}$ to $\eta = 10^{-3}$

Linear perturbations

Linearizing around $\mathcal{T}(\varpi) = \zeta_0 \varpi$

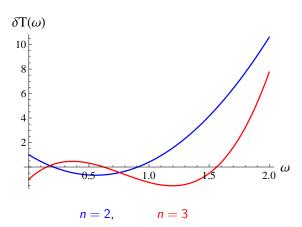
$$\delta \mathcal{T}(\varpi) \propto {}_1F_1\left(-rac{d-\lambda}{d-\eta};rac{d}{2};rac{d}{2}\zeta_0^2(d-\eta)\varpi
ight)$$

eigenvalues:
$$\lambda_n = d - n(d - \eta)$$
 for $n = 0, 1, 2 \cdots$

eigenperturbations: polynomia of order n

Linear perturbations

$$\eta = 0$$



Linear perturbations

Linearizing around the full $\eta > 0$ FP solution.

For any λ the perturbations are polynomial at the origin

$$\delta g(\varpi) \underset{\varpi \to 0}{\sim} e^{a(d,\eta)\zeta_0^2 \varpi} {}_1F_1\left(b(d,\eta,\lambda); 1+\frac{d}{2}; c(d,\eta)\zeta_0^2 \varpi\right)$$

and behave as

$$\delta \mathsf{g}(\varpi) \underset{\varpi \to +\infty}{\sim} \sqrt{\varpi}$$

Eigenvalues are not quantized !?

Determination of η

Computation of $\eta = -\partial_t \log Z_\phi$

$$Z_{\phi} = \left[\frac{d}{dp^2} \frac{\delta^2 S^I}{\delta \hat{\phi}(-p) \delta \hat{\phi}(p)} \right]_{p=0, \phi=\phi_{\min}}$$

$$= \frac{1}{d} \delta_{\mu\nu} \int_{x} \left[\left(\frac{\partial^{2} \mathcal{H}}{\partial \pi \cdot \partial \pi^{\cdot}} \right)^{-1} (x)^{(\mu)(\nu)} + 2 \frac{\partial^{2} \mathcal{H}}{\partial \pi^{N} \partial \phi} (x) \left(\frac{\partial^{2} \mathcal{H}}{\partial \pi^{\cdot} \partial \pi^{\cdot}} \right)^{-1} (x)^{(\mu,\nu)} \right]_{\phi = \phi_{\min}}$$

Determination of η

good reason for the failure: no spin 2 or maybe it's fault of the separability assumption? or it's just correct that η is a free parameter? but what about the linear perturbations?