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Polchinski's Equation

Polchinski's equation
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local Lagrangian truncation
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it comprehends also some nonlocal terms (by Taylor series about x)



Notations
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M = () corresponds to ¢pum(x) = ¢(x) and n =10

we use Einstein's summation convention
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From S to L

Right hand side of Polchinski's equation
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no explicit derivatives act on L!



From L to H

Replace derivatives with fields at any scale
introduce tensor fields " (no M = () from here on)

Covariant Ostrogradsky formalism

M, 0(x), 7)) = ext {7 (x)om(x) ~ £(x, 6(x), bm(x)) |

that is ac oy
™(x) = m(x) . om(x) = W(X)
equations of motion
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Flow Eq. for H

Flow equation of the Hamiltonian density
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no derivative of the fields ¢ and 7 appears!



Uniform Hamiltonian Approximation

‘H does not explicitly depend on x
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Partial differential eq. for a function of infinitely many higher-spin fields



Momenta Expansion

n-th order: neglect momenta with rank bigger than n
Zeroth order = full dependence on ¢ = LPA

First order = full dependence on 7* and ¢

In generic d:  H (w = 7tm,/2, §)



First Order Momenta Expansion

By dropping all higher momenta the flow equation simplifies to
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Rescaling H, @ and ¢ we remove regulator dependence: Ko =lh=5h1 =1
(not scheme dependence)



Critical Behavior

Dimensionless renormalized fields
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Demanding [1#¢,] = d: dy=(d—2+mn)/2 dr =(d—mn)/2
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Special solutions: H(w, ¢) = T (w) — V()



Separable FP

Two equations coupled through 7
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d =3 First equation shows three families of FP solutions ¥7:
GauBian, Wilson-Fisher, High—Temperature

Y. A. Kubyshin, R. Neves, R. Potting (2001);
H. Osborn and D. E. Twigg (2009);
C. Bervillier (2013)



FP T

Boundary conditions:

T'(0) = (o, equivalent to 7 = J; log Zy

T"(0) = —£5¢3 from the FP equation

One FP solution Vn > 0 T is linear in @ only for n =0
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Linear perturbations

Linearizing around T (w) = (ow

d—X\ d d
eigenvalues: An=d—n(d—n)forn=0,1,2--.

eigenperturbations: polynomia of order n



Linear perturbations

n=20
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Linear perturbations

Linearizing around the full 7 > 0 FP solution.

For any A the perturbations are polynomial at the origin
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and behave as

Eigenvalues are not quantized !7



Determination of 7

Computation of n = —0; log Zy
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Determination of 7

good reason for the failure: no spin 2
or maybe it's fault of the separability assumption?
or it's just correct that 7 is a free parameter?

but what about the linear perturbations?
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