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Motivation: study of non trivial fixed points

Irrelevant directions can be slow: problem for small volumes. Blocking?

Figure: Schematic flows for SU(3) with 12 flavors (picture by Yuzhi Liu).
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Block Spining in Configuration Space is difficult!

A BB

B

B

Figure: Ising 2, Step 1, Step 2, ....write the formula!

Yannick Meurice (U. of Iowa) TRG September 26 2014 4 / 21



TRG: simple and exact! (Levin, Wen, Xiang ..)

For each link, we use the Z2 character expansion:

exp(βσ1σ2) = cosh(β)(1 +
√

tanh(β)σ1
√

tanh(β)σ2) =

cosh(β)
∑

n12=0,1

(
√

tanh(β)σ1
√

tanh(β)σ2)
n12 .

Regroup the four terms involving a given spin σi and sum over its two
values ±1. The results can be expressed in terms of a tensor: T (i)

xx ′yy ′

which can be visualized as a cross attached to the site i with the four
legs covering half of the four links attached to i . The horizontal indices
x , x ′ and vertical indices y , y ′ take the values 0 and 1 as the index n12.

T (i)
xx ′yy ′ = fx fx ′ fy fy ′δ

(
mod[x + x ′ + y + y ′,2]

)
,

where f0 = 1 and f1 =
√

tanh(β). The delta symbol is 1 if
x + x ′ + y + y ′ is zero modulo 2 and zero otherwise.
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Exact form of the partition function:

Z = (cosh(β))2V Tr
∏

i T (i)
xx ′yy ′ .

Tr mean contractions (sums over 0 and 1) over the link indices.
Reproduces the closed paths of the HT expansion.

Important feature of the TRG blocking:
It separates the degrees of freedom inside the block (integrated over),
from those kept to communicate with the neighboring blocks.

Graphically :
(isotropic blocking)
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TRG Blocking defines a new rank-4 tensor T ′XX ′YY ′

Exact blocking formula (isotropic):

T ′X(x1,x2)X ′(x ′
1,x

′
2)Y (y1,y2)Y ′(y ′

1,y
′
2)
=∑

xU ,xD ,yR ,yL

Tx1xUy1yLTxUx ′
1y2yR

TxDx ′
2yRy ′

2
Tx2xDyLy ′

1
,

where X (x2, x2) is a notation for the product states e. g. ,
X (0,0) = 1, X (1,1) = 2, X (1,0) = 3, X (0,1) = 4.

The partition function can again be written as

Z = Tr
∏
2i

T ′(2i)
XX ′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the lattice
spacing of the original lattice.
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O(2) model

Z =

∫ ∏
i

dθi

2π
e
β

∑
<ij>

cos(θi−θj )

.

eβ cos(θi−θj ) =
+∞∑

nij=−∞
einij (θi−θj )Inij (β) ,

where the In are the modified Bessel functions. In two dimensions:

T i
nix ,nix′ ,niy ,niy′

=
√

Inix (β)
√

Iniy (β)
√

Inix′ (β)
√

Iniy′ (β)

δnix+niy ,nix′+niy′ .

The partition function and the blocking of the tensor are similar to the
Ising model, but the sums run over all the integers.
As the In(β) decay rapidly for large n and fixed β (namely like 1/n!)
The generalization to higher dimensions is straightforward.
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TRG formulations for other lattice models

O(3) nonlinear sigma model
Higher dimensions
Principal chiral models
Abelian gauge theories (Z2, ZN , U(1))
SU(2) gauge theories

(see Y. Liu et al. PRD 88 056005)

Yuya Shimizu and Yoshinobu Kuramashi, 1 flavor of Wilson fermion
Schwinger model, arxiv 1403.0642
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Practical Implementation: Truncations

For numerical calculations, we restrict the indices x , y , . . . to a
finite number Nstates.

We use the smallest blocking: M(n)
XX ′yy ′ =

∑
y ′′ T (n−1)

x1x ′
1yy ′′T

(n−1)
x2x ′

2y ′′y ′

where X = x1 ⊗ x2 and X ′ = x ′1 ⊗ x ′2 take now N2
states values.

We make a truncation N2
states → Nstates using

T (n)
xx ′yy ′ =

∑
IJ U(n)

xI M(n)
IJyy ′U

(n)∗
x ′J

The unitary matrix U diagonalizes a matrix which is either
GXX ′ =

∑
X ′′yy ′ MXX ′′yy ′M∗X ′X ′′yy ′ (Xie et al. PRB86, HOTRG)

TXX ′ =
∑

y MXX ′′yy (YM PRB87, Transfer Matrix)

and we only keep the Nstates eigenvectors corresponding the the
largest eigenvalues of one of these matrices.
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Overlap of the eigenvectors of GXX ′ and TXX ′

The overlap matrix Oij =
∑

X UiX Ũ∗Xj seems to have remarkable
properties. One example with O(2) indicates that the eigenvectors are
approximately the same but the eigenvalues are sometimes in a
different order:

Oij =



1. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0.9983 0. 0. 0. 0.0576 0.
0. 0.9999 0. 0. 0. 0. 0. 0.
0. 0. 0. 1. 0. 0. 0. 0.
0. 0. 0. 0. 0.9997 0. 0. 0.
0. 0. 0. 0. 0. 1. 0. 0.
0. 0. 0.0576 0. 0. 0. 0.9983 0.
0. 0. 0. 0. 0. 0. 0. 0.9996


ij

Values smaller than 10−7 in absolute value have been replaced by 0.
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Comparing with Onsager-Kaufman (PRD 89, 016008)
No sign problem!
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Figure: Zeros of Real (�) and Imaginary (�) part of the partition function of
the Ising model at volume 8× 8 from the HOTRG calculation with Ds = 40 are
on the exact lines. Gray lines: MC reweighting solution. Thick Black curve:
the "radius of confidence" for MC reweighting result, the error is large.
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Calculated zeros confirms KT FSS (1 + ν = 1.5) for
the O(2) model (PRD 89, 016008)

 0

 0.1

 0.2

 0.3

 0.4

 0.6  0.7  0.8  0.9  1  1.1

I
m
 

β

Re β

L=4

L=8

L=16

L=32

L=64
L=128

MC
Ds = 40
Ds = 50
Model

 0.09

 0.1

 0.92  0.94

1M

3M

13M

Figure: Zeros of XY model with linear size L = 4,8,16,32,64,128 (from
up-left to down-right) calculated from HOTRG with Ds = 40,50 and zeros with
L = 4,8,16,32 from MC. The curve is a model for trajectory of the lowest
zeros. Fit: Imβz = 1.27986× (1.1199− Reβz)

1.49944.
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Accurate exponents from approximate tensor
renormalizations (YM, PRB 87, 064422)

For the Ising model on a square lattice, the truncation method
(HOSVD) sharply singles out a surprisingly small subspace of
dimension two.
In the two states limit, the transformation can be handled
analytically yielding a value 0.964 for the critical exponent ν much
closer to the exact value 1 than 1.338 obtained in Migdal-Kadanoff
approximations. Alternative blocking procedures that preserve the
isotropy can improve the accuracy to ν = 0.987 (isotropic G) and
0.993 (T) respectively.
More than two states: adding a few more states does not improve
the accuracy (Efrati et al. RMP 86 (2014))
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The simplest example of quantum rotors ("Towards
quantum simulating ...", arxiv 1403.5238)

O(2) model with one space and one Euclidean time direction. The
Nx × Nt sites of the lattice are labelled (x , t). We assume periodic
boundary conditions in space and time.

Z =

∫ ∏
(x ,t)

dθ(x ,t)
2π

e−S

S = − βt
∑
(x ,t)

cos(θ(x ,t+1) − θ(x ,t) + iµ)

− βs
∑
(x ,t)

cos(θ(x+1,t) − θ(x ,t)).

In the isotropic case, we have βs = βt = β.
In the limit βt >> βs we reach the time continuum limit.
For µ 6= 0 and real, the MC method does not work (complex action).
For large µ, there is a correspondence with the Bose-Hubbard model
(Sachdev, Fisher, ..)
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Phase diagram
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Figure: Phase diagram for 2D O(2) isotropic model in β-µ plane (left) and in
the β-βeµ/2 plane (right) which resembles the anisotropic case. The lines
labeled by “3s" stand for the phase separation lines of a 3-states system.
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Evolution of eigenvalue distribution with µ (β = 0.3)
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Figure: The eigenvalues of the transfer matrix are all positive, and after
normalization can be interpreted as probabilities:

∑
i pi = 1 . We can then

define an invariant entropy S =
∑

i pi ln(pi) which increases with µ.
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Comparing Transfer matrix based TRG with the worm
algorithm for small systems

11 states for the initial tensor and then enough states in the first
blocking to stabilize 〈N〉 with 5 digits (in progress, estimated error less
of order 1 in the last digit, preliminary).

size β µ 〈N〉 (worm) 〈N〉(HOTRG) number of states
2 × 2 0.06 3.5 0.69156 0.69155 31
2 × 4 0.06 3.5 0.54080 0.54079 15
2 × 2 0.3 1.8 0.61204 0.61204 34
2 × 4 0.3 1.8 0.47929 0.47930 18

Good progress 4x4, 4x8, 8x8, 8x16, 16x16 (with Li Ping Yang, Yuzhi
Liu and Haiyuan Zou)
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Optical Lattice Implementations?

tatb

Ub UaW

Vb Va

Figure: (Color Online) Two-species (green and red) bosons in optical lattice
with species-dependent optical lattice (with the same green and red). The
nearest neighbor interaction is coming from overlap of Wannier gaussian
wave functions. We assume the difference between intra-species interactions
are small U � δ (see arxiv 1403.5238 for details).
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O(3) model, Judah Unmuth-Yockey (in progress)

2-d O(3) has similarities with 4-d Yang-Mills:
asymptotic freedom
no phase transition (no ordered phase)
topological solutions (instantons)

Goal: check the asymptotic and finite size scaling of the mass gap
m(β,L). For large L, m(β) ∝ β exp(−2πβ) . FSS: Luscher 82.

Numerical results (correlations and <E>) show apparent convergence
in the number of states (with J. Unmuth-Yuckey and J. Osborn).
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Conclusions

TRG: Exact blocking with controllable approximations
Deals well with sign problems, reliable at larger Imβ than
reweighting MC
Ising case: checked with the complex Onsager-Kaufman exact
solution
Finite Size Scaling of Fisher zeros of O(2) agrees with
Kosterlitz-Thouless
Towards agreement with the worm algorithm at 5 digit level
Good understanding of the systematic errors
O(3) Asymptotic scaling in progress
Reliable transfer matrix calculations (real time evolution?)

Thanks!
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