# Competing Order Parameters and Multicritical Phenomena

#### Sebastian J. Wetzel

In collaboration with Igor Böttcher, Michael Scherer and Christof Wetterich

Institute for Theoretical Physics, University of Heidelberg

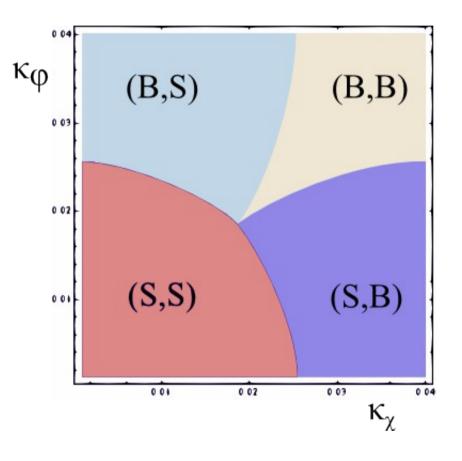
September 24, 2014 Lefkada

# Outline

- Motivation
  - Anisotropic Antiferromagnets
- Method Truncation
- Phase Structure
  - Fixed Points
  - Stability
  - Local Phase Diagrams

# **Competing Orders**

- Phases characterized by order parameters
- Goal: determine interplay between two order parameters

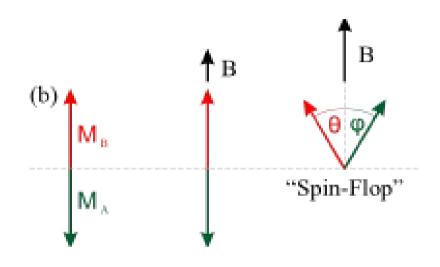


#### **Anisotropic Antiferromagnets**

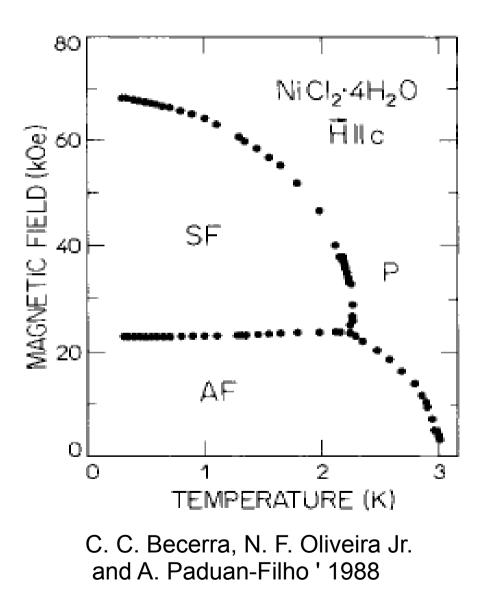
- > Anisotropic Heisenberg Model in d = 3 dimensions.
- ▹ Symmetric under  $O(2) \oplus O(1)$

$$\mathcal{H} = J \sum_{\langle mn \rangle} \mathbf{S}_m \cdot \mathbf{S}_n + A \sum_{\langle mn \rangle} S_{m,z} S_{n,z} - H \sum_m S_{m,z}$$

# Anisotropic Antiferromagnets



- External fields induce a spinflop phase
- Goal: determine nature of multicritical point



#### **Functional Renormalization Group**

- > Universality: Explore scalar field theory with  ${\rm O}(M)\oplus {\rm O}(N)$  symmetry in d=3 dimensions
- Method: Functional Renormalization Group

$$\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{STr}\left( \partial_k R_k \left( \Gamma_k^{(2)} + R_k \right)^{-1} \right)$$

C.Wetterich ' 1993

- > Phase diagrams: Solving the renormalization group equation from an initial scale  $k = \Lambda$  to k = 0
- Fixed Points: Zeros of Flow equation

#### **Functional Renormalization Group**

Truncation of the effective action:

$$\Gamma[\phi,\chi] = \int \mathrm{d}^d x \,\left(\frac{1}{2} Z_\phi \phi_a(-\nabla^2)\phi_a + \frac{1}{2} Z_\chi \chi_a(-\nabla^2)\chi_a + U(\rho_\phi,\rho_\chi)\right)$$

Symmetry invatiants:

$$\rho_{\phi} = \frac{1}{2}\phi_a \phi_a , \ \rho_{\chi} = \frac{1}{2}\chi_a \chi_a , \ a = 1, ..., M , \ b = 1, ..., N$$

Expansion of the effective potential: coupling constants

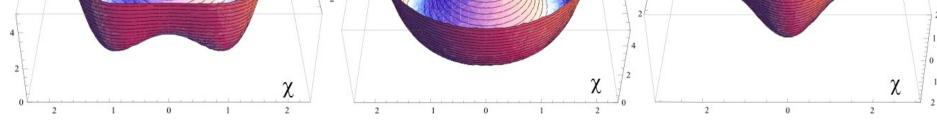
$$U(\rho_{\phi}, \rho_{\chi}) = \sum_{1 \le i+j \le \text{ord}} \frac{\lambda_{ij}}{i!j!} (\rho_{\phi} - \rho_{0\phi})^{i} (\rho_{\chi} - \rho_{0\chi})^{j}$$

Order parameters:  $\rho_{0\phi}, \rho_{0\chi}$  or in dimensionless form  $\kappa_{\phi}, \kappa_{\chi}$ 

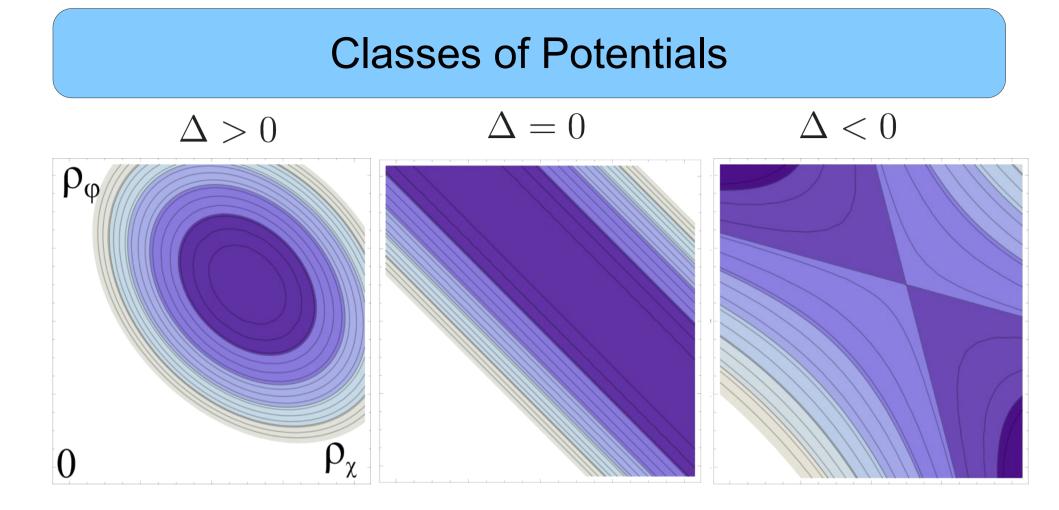
#### **Classes of Potentials**

Hessian Determinant at expansion point  $\Delta = \lambda_{20}\lambda_{02} - \lambda_{11}^2$ 



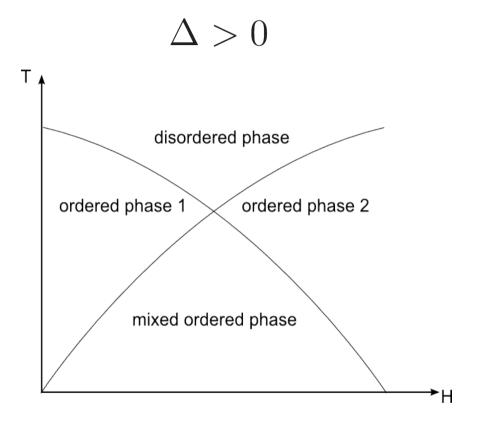


- Measure of distance from symmetry enhancement
- > Renormalization Group flow cannot cross  $\Delta = 0$

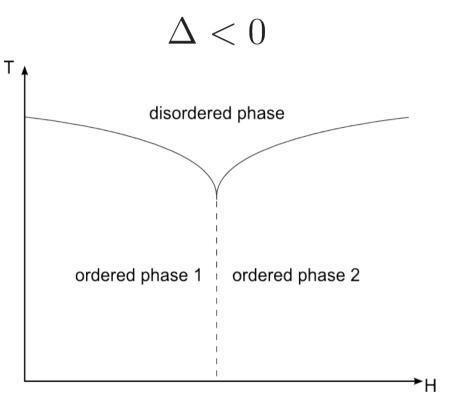


- $\succ \Delta > 0$  Continuous PT: Minimum moves to either axis
- $\succ \Delta < 0~~{\rm 1^{st}}$  order PT: relative height of Minima changes

#### **General Phase Structure**

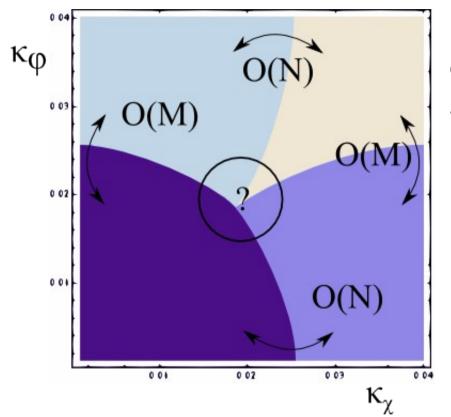


- Tetracritical phase diagram
- Rich critical physics at MCP



- Bicritical phase diagram
- No coexistence phase

## Continuous Phase Transitions $\Delta > 0$



**Fixed Points:** 

For every initial potential in any order of truncation we need to tune 2 couplings to reach the MCP

- MCP RG equivalent to a FP with 2 relevant couplings
- Identify stable fixed point by # of positive critical exponents = 2

Isotropic FP: Symmetry enhancement to WF O(M + N)Decoupled FP: Decoupling to WF O(M) and O(N)Biconical FP: NEW

# **Isotropic Fixed Point**

| M, N | $y_1$ | $y_2$ | $y_3$  | $\eta_{\phi}$ | $\eta_{\chi}$ |
|------|-------|-------|--------|---------------|---------------|
| 1, 1 | 2.08  | 1.45  | -0.034 | 0.043         | 0.043         |
| 1,2  | 1.91  | 1.36  | 0.095  | 0.041         | 0.041         |
| 1,3  | 1.77  | 1.29  | 0.203  | 0.037         | 0.037         |
| 2,2  | 1.77  | 1.29  | 0.203  | 0.037         | 0.037         |

- ▶ IFP stable for  $O(1) \oplus O(1)$  symmetric models
- > In only these models a small asymmetry between  $\phi$  and  $\chi$  will be cured by the RG flow close to the MCP

(Conventional notation  $\nu_i = y_i^{-1}$ )

# **Decoupled Fixed Point**

| M, N | $y_1$ | $y_2$ | $y_3$  | $\eta_{\phi}$ | $\eta_{\chi}$ |
|------|-------|-------|--------|---------------|---------------|
| 1, 1 | 1.56  | 1.56  | 0.080  | 0.044         | 0.044         |
| 1, 2 | 1.56  | 1.45  | -0.027 | 0.044         | 0.043         |
| 1,3  | 1.56  | 1.36  | -0.112 | 0.044         | 0.041         |
| 2,2  | 1.45  | 1.45  | -0.135 | 0.043         | 0.043         |

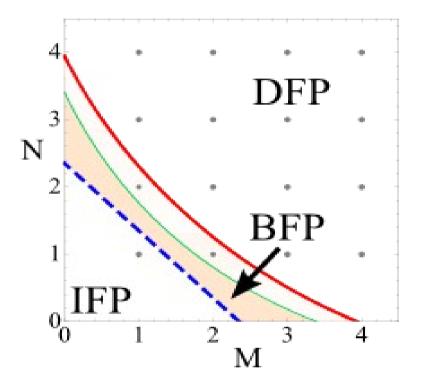
- $\succ$  DFP stable for models with  $M+N\geq 3$
- In these models the RG flow decouples both fields near the MCP

# **Biconical Fixed Point**

| M, N | $y_1$ | $y_2$ | $y_3$ | $\eta_{\phi}$ | $\eta_{\chi}$ |
|------|-------|-------|-------|---------------|---------------|
| 1,1  | 1.93  |       |       | 0.055         | 0.055         |
| 1,2  | 1.59  | 1.42  | 0.035 | 0.046         | 0.045         |
| 1,3  | 1.72  | 1.27  | 0.166 | 0.045         | 0.041         |
| 2,2  |       |       |       | 0.043         |               |

- New fixed point cannot be inferred from WF fixed points
- In our truncation not stable for any physical symmetry group
- $\succ$  Might be stable for  $O(2)\oplus O(1)$  (P.Calabrese, A.Pelissetto, E.Vicari ' 2002)
- > Regulator analysis shows inaccuracy of  $\Delta y_3 \lesssim 0.07$

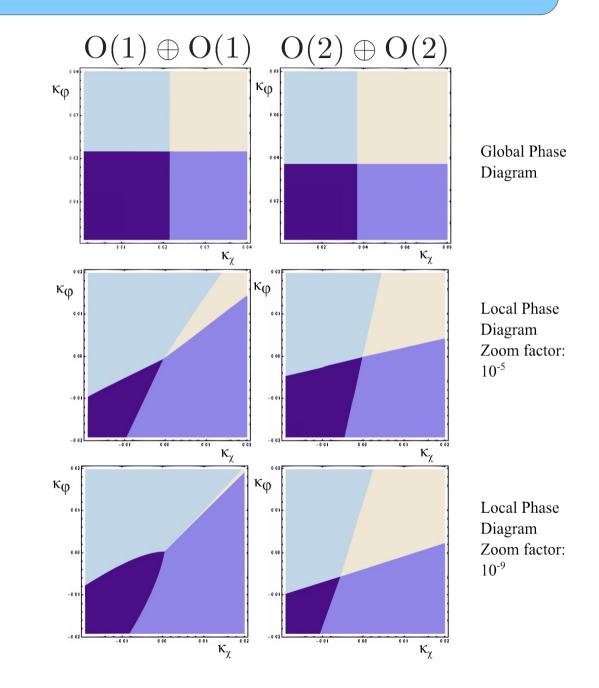
#### **Stability of Fixed Points**



Red: FRG+Scaling relation (A.Eichhorn, D.Mesterhazy, M. Scherer ' 2013) Green: Best unbiased calculation ( $\rho^7, \eta \neq 0$ )

## Effects of Fixed Points on Phase Diagrams

- > Initial Potential: at DFP,  $\lambda_{11} = \epsilon > 0$
- > O(1) ⊕ O(1) diagram
   converges to bicriticality
   (IFP stable)
- >  $O(2) \oplus O(2)$  Diagram stays tetracritical (DFP stable)



# Conclusion

- > We calculated properties of phase diagrams near MCP for all models exhibiting  $O(M) \oplus O(N)$ symmetry in d = 3 dimensions.
- > Only  $O(1)\oplus O(1)$  symmetric models restore an enhanced symmetry near the MCP.
- > Other models with  $M + N \ge 3$  (?) decouple close to the MCP.