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Introduction

QFT of one real scalar field and Dirac fermions
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The truncation we consider is the following:
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There is a special symmetry one may consider which is the Z2 symmetry requinring the

invariance over �! ��. For systems linked to standard Yukawa system which are parametrized

by H(�) = y� which are odd under Z2 then one requires that spinor transform as  ! i and

 ̄ ! i ̄. A generalization of local interactions with such a symmetry then requires an odd

H�). There are Nf Dirac fermions in a representation of dimension d� . (Nf , d�) and we define

Xf = Nfd� for simplicity. There is also the possibility to have unchanged spinors under the

transformation, which would require an even function H(�). In this work we shall consider the

case of an odd Yukawa potential H.

We shall make our analysis in the LPA approximation (lowest order of the derivative expan-

sion, with Z� = Z = 1 and therefore zero anomalous dimensions)

(Not sure we want to write more in general... nevertheless the flow equation for the two

potentials in the LPA’ (including a dependence in the anomalous dimensions))

After rescaling to dimensionless variables, the flow equation for the two potentials are given

by
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where we have defined the constant Cd such that C�1
d = (4⇡)d/2�

�
1 + d

2

�
. The fixed points

giving the scaling solutions in the LPA are determined by solving the coupled system of two

ordinary di↵erential equations

0 = �dv +
d� 2

2
� v0 + Cd

✓
1

1 + v00
� Xf

1 + h2

◆
(I.4)

2

I. FORMULAE

The truncation we consider is the following:

�k

⇥
�, ,  ̄

⇤
=

Z
d4x

✓
1

2
Z�,k @

µ�@µ�+ Vk(�) + Z ,k ̄�
µi@µ + iHk(�)  ̄  

◆
(I.1)

There is a special symmetry one may consider which is the Z2 symmetry requinring the

invariance over �! ��. For systems linked to standard Yukawa system which are parametrized

by H(�) = y� which are odd under Z2 then one requires that spinor transform as  ! i and

 ̄ ! i ̄. A generalization of local interactions with such a symmetry then requires an odd

H�). There are Nf Dirac fermions in a representation of dimension d� . (Nf , d�) and we define

Xf = Nf d� for simplicity. There is also the possibility to have unchanged spinors under the

transformation, which would require an even function H(�). In this work we shall consider the

case of an odd Yukawa potential H.

We shall make our analysis in the LPA approximation (lowest order of the derivative expan-

sion, with Z� = Z = 1 and therefore zero anomalous dimensions)

(Not sure we want to write more in general... nevertheless the flow equation for the two

potentials in the LPA’ (including a dependence in the anomalous dimensions))

After rescaling to dimensionless variables, the flow equation for the two potentials are given

by

v̇ = �dv +
d� 2 + ⌘�

2
� v0 + Cd

 
1� ⌘�

d+2

1 + v00
�Xf

1� ⌘ 
d+1

1 + h2

!
(I.2)
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Symmetries: 
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ḣ = (⌘ � 1)h+
d� 2 + ⌘�

2
�h0 +

Cd

2

42h
�
h0
�2
 

1� ⌘ 
d+1

(1 + h2)2 (1 + v00)
+

1� ⌘�
d+2

(1 + h2) (1 + v00)2

!
�

h00
⇣
1� ⌘�

d+2

⌘

(1 + v00)2

3

5 (I.3)

where we have defined the constant Cd such that C�1
d = (4⇡)d/2�

�
1 + d

2

�
. The fixed points

giving the scaling solutions in the LPA are determined by solving the coupled system of two

ordinary di↵erential equations

0 = �dv +
d� 2

2
� v0 + Cd

✓
1

1 + v00
� Xf

1 + h2

◆
(I.4)

2

Typically the lagrangian density one considers is: 
and a polynomial form of the scalar potential is used. 
Gies, Scherer 2010  (d=4)  , Rosa, Vitale, Wetterich 2001 , Sonoda 2011  (d=3) , …..
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For a SUSY model both the scalar potential and Yukawa interactions in the on shell lagrangian density 
are dependent on the same function. A study in term of polynomial truncations has been done. 
Synatschke, Braun, Wipf  2010   (d=3)
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corrections to fermionic and bosonic masses, has been
determined in the real-time formulation in [22]. The in-
evitable breaking of supersymmetry at finite temperature
has sometimes been called spontaneous collapse of super-
symmetry [23].
In Sect. IV we derive the RG flow equations at finite

temperature. In addition to the momentum integrals we
are confronted with sums over Matsubara frequencies.
For the three-dimensional Wess-Zumino model and for a
particular regulator the thermal sums can be calculated
analytically. Related sums have been discussed in earlier
works on finite-temperature renormalization group flow
equations, for example in [24–27, 29–32]. We observe
that the Wess-Zumino model in three dimensions at finite
temperature in the 2 symmetric phase behaves similarly
to a gas of massless bosons. In particular we show in
Sect. IVA that it obeys the Stefan-Boltzmann law in
three dimensions. For high temperatures the fermions
do not contribute to the flow equations since they do not
have a thermal zero-mode. On the other hand we observe
dimensional reduction in the bosonic part of the model
due to the presence of a thermal zero-mode. We show in
Sect. IVB how this is manifested in our RG framework.
In a similar way dimensional reduction has been observed
in O(N)-models at finite temperature in [33, 34]. Finally
we compute the phase diagram for the restoration of the
global Z2 symmetry at finite temperature in Sect. IVC.

II. THE N = 1 WESS-ZUMINO MODEL IN
THREE DIMENSIONS AT T = 0

There are many works on the supersymmetric Wess-
Zumino models in both four and two space-time di-
mensions. Actually the two-dimensional model with
N = 2 supersymmetries is just the toroidal compactifi-
cation of the four-dimensional N = 1 model. The three-
dimensional model with N = 1 supersymmetry, on the
other hand, cannot be obtained by dimensional reduction
of a local field theory in four dimensions. Thus it may be
useful to recall the construction of the three-dimensional
model starting from the real superfield

Φ(x,α) = φ(x) + ᾱψ(x) +
1

2
ᾱαF (x) (1)

with real (pseudo)scalar fields φ, F and Majorana spinor-
field ψ. The supersymmetry variations are generated by
the supercharge

δβΦ = iβ̄QΦ, Q = −i ∂
∂ᾱ
− (γµα)∂µ . (2)

We use the metric tensor (ηµν) = diag(1,−1−1) to lower
Lorentz indices. With the aid of the symmetry relations
for Majorana spinors ψ̄χ = χ̄ψ, ψ̄γµχ = −χ̄γµψ and the
particular Fierz identity αᾱ = −ᾱα /2 the transforma-
tion laws for the component fields follow from Eq. (2):

δφ = β̄ψ, δψ = (F + i/∂φ)β, δF = iβ̄ /∂ψ . (3)

The anticommutator of two supercharges yields
{

Qα, Q̄β
}

= 2(γµ)α
β∂µ. The supercovariant derivatives

are

D =
∂

∂ᾱ
+ i(γµα)∂µ, and D̄ = − ∂

∂α
− i(ᾱγµ)∂µ. (4)

Up to a sign they obey the same anticommutation rela-
tion as the supercharges

{Dα, D̄β} = −2(γ)αβ∂µ . (5)

As kinetic term we choose the D term of D̄ΦDΦ =
2ᾱαLkin + . . . which reads

Lkin =
1

2
∂µφ∂

µφ− i

2
ψ̄/∂ψ +

1

2
F 2. (6)

The interaction term is the D term of 2W (Φ) = ᾱαLint+
. . . and contains a Yukawa term,

Lint = FW ′(φ)− 1

2
W ′′(φ)ψ̄ψ. (7)

The complete off-shell Lagrange density Loff = Lkin+Lint

takes then the simple form

Loff =
1

2
∂µφ∂

µφ− i

2
ψ̄/∂ψ+

1

2
F 2+FW ′(φ)− 1

2
W ′′(φ)ψ̄ψ.

(8)
Eliminating the auxiliary field via its equation of motion
F = −W ′(φ), we end up with the on-shell density

Lon =
1

2
∂µφ∂

µφ− i

2
ψ̄/∂ψ − 1

2
W ′2(φ) − 1

2
W ′′(φ)ψ̄ψ.

(9)

From this expression we read off that W ′2(φ) acts as
a self-interaction potential for the scalar fields. For a
polynomial superpotential W (φ) in which the power of
the leading term is even, W (φ) = cφ2n +O(φ2n), we do
not observe supersymmetry breaking in our present non-
perturbative renormalization group study1. On the other
hand spontaneous supersymmetry breaking is definitely
possible for a superpotential in which the power of the
leading term is odd. In the explicit calculations we shall
use a Majorana representation for the γ-matrices, γ0 =
σ2, γ1 = iσ3 and γ2 = iσ1.

III. FLOW EQUATION AT ZERO
TEMPERATURE

To find a manifestly supersymmetric flow equation in
the off-shell formulation we extend our earlier results on

1 In a two-loop calculation a ground state with broken super-
symmetry has been found in Ref. [36]. Since we neglect higher
F -terms in our non-perturbative study it is not possible to check
whether the findings of this perturbative analysis of the Wess-
Zumino model hold when higher-order corrections are taken into
account.

Here we shall study this QFT using the following truncation where we neglect terms related to 2n fermion 
interactions (n>1) which may exist depending on 
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and essentially limiting ourself to the LPA (Z’s=1)
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A very recent work for quark-mesonic interactions also considers more general Yukawa interactions 
Pawlowski, Rennecke 1403.1179
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Further considerations on the existence of other contributions (suppressed) to the asymptotic

behavior (exponentially)?

Note that in the numerical analysis we consider several subleading terms of the asymptotic

power-like expansion.

A. Critical dimensions

Canonical dimensions of the scalar field d� = d
2�1 and of the fermion field d = d�1

2 tells

that the interactions of the kind �n �2n and yn �2n+1 ̄ 

d(v)c (n � 2) =
2n

n� 1
= 4 , 3 ,

8

3
,
5

2
,
12

5
, · · · (I.15)

d(h)c (n � 0) =
4(n+ 1)

2n+ 1
= 4 ,

8

3
,
12

5
, · · · (I.16)
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Depending on the dimension there are several possible relevant operators

• Classical scaling behaviour at the fixed point

For dimensionless quantities the leading asymptotic behaviour (              ) is determined by 
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Functional RG approach
We shall study the flow of the Euclidean Average Effective Action   Wetterich

• In terms of a field multiplet      containing bosonic and fermionic d.o.f. the flow equation reads�

where through the cutoff operator         one can control the contributions of the low scale fluctuations 
in the functional integral.

@t = k@k

R̂k

• We employ the optimised cutoff  [Litim]. 
  
    For the scalar field: 
!
    For the fermion fields: 
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2Dipartimento di Fisica, Università degli Studi di Bologna and INFN sezione di Bologna,

via Irnerio, 46 – I-40126 Bologna – Italy

Abstract. We compute the gravitational corrections to the running of couplings in a scalar-
fermion system, using the Wilsonian approach. Our discussion is relevant for symmetric as well as
for broken scalar phases. We find that the Yukawa and quartic scalar couplings become irrelevant
at the Gaussian fixed point.

PACS numbers:

I. INTRODUCTION

The lack of renormalizability of Einstein’s theory does
not preclude the possibility of calculating quantum cor-
rections to low energy processes due to graviton loops
[1]. This effective field theory approach has been applied
to calculate corrections to the gravitational potential [2]
and the running of Newton’s constant [3–5]. Graviton
loops also contribute to the beta functions of matter cou-
plings. This has been studied in the case of a scalar field
in [6]. More recently, there has been considerable interest
in (and controversy about) the corrections to the beta
function of gauge couplings [7]. Aside from the intrin-
sic theoretical interest, such effects could have obvious
applications to grand unified theories, whose characteris-
tic energy scale is not too distant from the Planck scale,
where gravity becomes strong. In fact, it has been argued
recently [8] that in the determination of the GUT scale,
quantum gravitational effects could be more important
than two loop effects.
With these motivations in mind, and in the same spirit,

we will calculate here the gravitational effects on the beta
functions of a simple Yukawa theory, consisting of one
scalar and Nf fermion fields. We will do our calculations
in flat Euclidean space, and therefore we will not calcu-
late here the effect that the matter has on the running
of the gravitational couplings (e.g. Newton’s constant),
but at least in the limit where the matter couplings are
negligible, this effect is easily calculable [9].
In addition to the above, there is also another reason

for studying this problem. If we look for a fundamental,
as opposed to effective, theory of quantum gravity, there
is now the concrete possibility that a purely field theo-
retic solution can be obtained, provided that the renor-
malization group has a fixed point with a finite number of
UV attractive (relevant) directions. A theory with these
properties is said to be asymptotically safe and has the
same good properties (finiteness, predictivity) as, for ex-
ample, QCD. The failure of perturbation theory means
that the Gaussian fixed point of gravity does not have the
desired properties. Work done in the last ten years has
provided rather convincing evidence for the existence of a
suitable nontrivial fixed point in pure gravity; see [10] for
reviews. It is then important to make sure that this fixed
point persists also when interacting matter is brought in.

In the case of scalar interactions, this was discussed in
[11]. It was shown that there exists a “Gaussian mat-
ter fixed point”, where the gravitational couplings are
nonzero and slightly shifted relative to pure gravity, but
all scalar selfinteractions are asymptotically free or zero.
Our results imply that such a fixed point exists also in
the presence of a Yukawa coupling.
Finally we mention that asymptotic safety may play

a role also in the standard model. Some evidence for a
nontrivial fixed point in Yukawa systems has appeared
recently [12]. If this was the case, then the calculations
presented here are necessary to complete the picture by
including also the gravitational interactions.

II. YUKAWA SYSTEM

In this section we set up the calculation. The flow of
the renormalized couplings will be computed on a flat
Euclidean background using an exact flow equation. An
infrared cutoff, denoted k, is introduced via a cutoff term
∆Sk, in order to define a scale dependent generating
functional of connected Green’s functions:

Wk[J ] = − log

∫

[dΦ]e−S[Φ]−
∫
JΦ−∆Sk[Φ] . (1)

In flat space the cutoff term has the general form
∆Sk[Φ] =

1
2

∫

d4xΦRΦ
k (−∂2)Φ and RΦ

k (z) is constructed
so as to suppress the contributions to the functional inte-
gral from the infrared modes of the field Φ. For a scalar φ,
we choose Rφk (z) = k2r(z/k2), with r(y) = (1−y)θ(1−y)
[13], leading to the substitution −∂2 = z → Pk(z) =
z+k2r(z/k2), a kind of cutoff-propagator. For a fermion
ψ, Rψk (i∂/) = (

√

Pk(−∂2)/(−∂2)− 1)i∂/.
The cutoff-corrected Legendre transform Γk = Wk −

∫

d4xJφ−∆Sk(φ) defines the effective average action Γk

satisfying the renormalization group equation [14, 15]

∂tΓk =
1

2
STr

[

(

δ2Γk

δφδφ
+Rk

)−1

∂tRk

]

, (2)

where t = ln k and STr denotes a functional trace, in-
cluding a factor −1 for fermions. We will restrict our
considerations to functionals Γk of the following form

Γk

[

gµν ,φ,ψ, ψ̄
]

=

∫

d4x(Lb+Lf +Lg+LGF +Lgh) . (3)

The theory contains a single scalar field with Lagrangian

Lb =
√
g(12Zφ∇

µφ∇µφ+ V (φ)) .
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the presence of a Yukawa coupling.
Finally we mention that asymptotic safety may play

a role also in the standard model. Some evidence for a
nontrivial fixed point in Yukawa systems has appeared
recently [12]. If this was the case, then the calculations
presented here are necessary to complete the picture by
including also the gravitational interactions.

II. YUKAWA SYSTEM

In this section we set up the calculation. The flow of
the renormalized couplings will be computed on a flat
Euclidean background using an exact flow equation. An
infrared cutoff, denoted k, is introduced via a cutoff term
∆Sk, in order to define a scale dependent generating
functional of connected Green’s functions:

Wk[J ] = − log

∫

[dΦ]e−S[Φ]−
∫
JΦ−∆Sk[Φ] . (1)

In flat space the cutoff term has the general form
∆Sk[Φ] =

1
2

∫

d4xΦRΦ
k (−∂2)Φ and RΦ

k (z) is constructed
so as to suppress the contributions to the functional inte-
gral from the infrared modes of the field Φ. For a scalar φ,
we choose Rφk (z) = k2r(z/k2), with r(y) = (1−y)θ(1−y)
[13], leading to the substitution −∂2 = z → Pk(z) =
z+k2r(z/k2), a kind of cutoff-propagator. For a fermion
ψ, Rψk (i∂/) = (

√

Pk(−∂2)/(−∂2)− 1)i∂/.
The cutoff-corrected Legendre transform Γk = Wk −

∫

d4xJφ−∆Sk(φ) defines the effective average action Γk

satisfying the renormalization group equation [14, 15]

∂tΓk =
1

2
STr

[

(

δ2Γk

δφδφ
+Rk

)−1

∂tRk

]

, (2)

where t = ln k and STr denotes a functional trace, in-
cluding a factor −1 for fermions. We will restrict our
considerations to functionals Γk of the following form

Γk

[

gµν ,φ,ψ, ψ̄
]

=

∫

d4x(Lb+Lf +Lg+LGF +Lgh) . (3)

The theory contains a single scalar field with Lagrangian

Lb =
√
g(12Zφ∇

µφ∇µφ+ V (φ)) .
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I. INTRODUCTION

The lack of renormalizability of Einstein’s theory does
not preclude the possibility of calculating quantum cor-
rections to low energy processes due to graviton loops
[1]. This effective field theory approach has been applied
to calculate corrections to the gravitational potential [2]
and the running of Newton’s constant [3–5]. Graviton
loops also contribute to the beta functions of matter cou-
plings. This has been studied in the case of a scalar field
in [6]. More recently, there has been considerable interest
in (and controversy about) the corrections to the beta
function of gauge couplings [7]. Aside from the intrin-
sic theoretical interest, such effects could have obvious
applications to grand unified theories, whose characteris-
tic energy scale is not too distant from the Planck scale,
where gravity becomes strong. In fact, it has been argued
recently [8] that in the determination of the GUT scale,
quantum gravitational effects could be more important
than two loop effects.
With these motivations in mind, and in the same spirit,

we will calculate here the gravitational effects on the beta
functions of a simple Yukawa theory, consisting of one
scalar and Nf fermion fields. We will do our calculations
in flat Euclidean space, and therefore we will not calcu-
late here the effect that the matter has on the running
of the gravitational couplings (e.g. Newton’s constant),
but at least in the limit where the matter couplings are
negligible, this effect is easily calculable [9].
In addition to the above, there is also another reason

for studying this problem. If we look for a fundamental,
as opposed to effective, theory of quantum gravity, there
is now the concrete possibility that a purely field theo-
retic solution can be obtained, provided that the renor-
malization group has a fixed point with a finite number of
UV attractive (relevant) directions. A theory with these
properties is said to be asymptotically safe and has the
same good properties (finiteness, predictivity) as, for ex-
ample, QCD. The failure of perturbation theory means
that the Gaussian fixed point of gravity does not have the
desired properties. Work done in the last ten years has
provided rather convincing evidence for the existence of a
suitable nontrivial fixed point in pure gravity; see [10] for
reviews. It is then important to make sure that this fixed
point persists also when interacting matter is brought in.

In the case of scalar interactions, this was discussed in
[11]. It was shown that there exists a “Gaussian mat-
ter fixed point”, where the gravitational couplings are
nonzero and slightly shifted relative to pure gravity, but
all scalar selfinteractions are asymptotically free or zero.
Our results imply that such a fixed point exists also in
the presence of a Yukawa coupling.
Finally we mention that asymptotic safety may play

a role also in the standard model. Some evidence for a
nontrivial fixed point in Yukawa systems has appeared
recently [12]. If this was the case, then the calculations
presented here are necessary to complete the picture by
including also the gravitational interactions.

II. YUKAWA SYSTEM

In this section we set up the calculation. The flow of
the renormalized couplings will be computed on a flat
Euclidean background using an exact flow equation. An
infrared cutoff, denoted k, is introduced via a cutoff term
∆Sk, in order to define a scale dependent generating
functional of connected Green’s functions:

Wk[J ] = − log

∫

[dΦ]e−S[Φ]−
∫
JΦ−∆Sk[Φ] . (1)

In flat space the cutoff term has the general form
∆Sk[Φ] =

1
2

∫

d4xΦRΦ
k (−∂2)Φ and RΦ

k (z) is constructed
so as to suppress the contributions to the functional inte-
gral from the infrared modes of the field Φ. For a scalar φ,
we choose Rφk (z) = k2r(z/k2), with r(y) = (1−y)θ(1−y)
[13], leading to the substitution −∂2 = z → Pk(z) =
z+k2r(z/k2), a kind of cutoff-propagator. For a fermion
ψ, Rψk (i∂/) = (

√

Pk(−∂2)/(−∂2)− 1)i∂/.
The cutoff-corrected Legendre transform Γk = Wk −

∫

d4xJφ−∆Sk(φ) defines the effective average action Γk

satisfying the renormalization group equation [14, 15]

∂tΓk =
1

2
STr

[

(

δ2Γk

δφδφ
+Rk

)−1

∂tRk

]

, (2)

where t = ln k and STr denotes a functional trace, in-
cluding a factor −1 for fermions. We will restrict our
considerations to functionals Γk of the following form

Γk

[

gµν ,φ,ψ, ψ̄
]

=

∫

d4x(Lb+Lf +Lg+LGF +Lgh) . (3)

The theory contains a single scalar field with Lagrangian

Lb =
√
g(12Zφ∇

µφ∇µφ+ V (φ)) .
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I. INTRODUCTION

The lack of renormalizability of Einstein’s theory does
not preclude the possibility of calculating quantum cor-
rections to low energy processes due to graviton loops
[1]. This effective field theory approach has been applied
to calculate corrections to the gravitational potential [2]
and the running of Newton’s constant [3–5]. Graviton
loops also contribute to the beta functions of matter cou-
plings. This has been studied in the case of a scalar field
in [6]. More recently, there has been considerable interest
in (and controversy about) the corrections to the beta
function of gauge couplings [7]. Aside from the intrin-
sic theoretical interest, such effects could have obvious
applications to grand unified theories, whose characteris-
tic energy scale is not too distant from the Planck scale,
where gravity becomes strong. In fact, it has been argued
recently [8] that in the determination of the GUT scale,
quantum gravitational effects could be more important
than two loop effects.
With these motivations in mind, and in the same spirit,

we will calculate here the gravitational effects on the beta
functions of a simple Yukawa theory, consisting of one
scalar and Nf fermion fields. We will do our calculations
in flat Euclidean space, and therefore we will not calcu-
late here the effect that the matter has on the running
of the gravitational couplings (e.g. Newton’s constant),
but at least in the limit where the matter couplings are
negligible, this effect is easily calculable [9].
In addition to the above, there is also another reason

for studying this problem. If we look for a fundamental,
as opposed to effective, theory of quantum gravity, there
is now the concrete possibility that a purely field theo-
retic solution can be obtained, provided that the renor-
malization group has a fixed point with a finite number of
UV attractive (relevant) directions. A theory with these
properties is said to be asymptotically safe and has the
same good properties (finiteness, predictivity) as, for ex-
ample, QCD. The failure of perturbation theory means
that the Gaussian fixed point of gravity does not have the
desired properties. Work done in the last ten years has
provided rather convincing evidence for the existence of a
suitable nontrivial fixed point in pure gravity; see [10] for
reviews. It is then important to make sure that this fixed
point persists also when interacting matter is brought in.

In the case of scalar interactions, this was discussed in
[11]. It was shown that there exists a “Gaussian mat-
ter fixed point”, where the gravitational couplings are
nonzero and slightly shifted relative to pure gravity, but
all scalar selfinteractions are asymptotically free or zero.
Our results imply that such a fixed point exists also in
the presence of a Yukawa coupling.
Finally we mention that asymptotic safety may play

a role also in the standard model. Some evidence for a
nontrivial fixed point in Yukawa systems has appeared
recently [12]. If this was the case, then the calculations
presented here are necessary to complete the picture by
including also the gravitational interactions.

II. YUKAWA SYSTEM

In this section we set up the calculation. The flow of
the renormalized couplings will be computed on a flat
Euclidean background using an exact flow equation. An
infrared cutoff, denoted k, is introduced via a cutoff term
∆Sk, in order to define a scale dependent generating
functional of connected Green’s functions:

Wk[J ] = − log

∫

[dΦ]e−S[Φ]−
∫
JΦ−∆Sk[Φ] . (1)

In flat space the cutoff term has the general form
∆Sk[Φ] =

1
2

∫

d4xΦRΦ
k (−∂2)Φ and RΦ

k (z) is constructed
so as to suppress the contributions to the functional inte-
gral from the infrared modes of the field Φ. For a scalar φ,
we choose Rφk (z) = k2r(z/k2), with r(y) = (1−y)θ(1−y)
[13], leading to the substitution −∂2 = z → Pk(z) =
z+k2r(z/k2), a kind of cutoff-propagator. For a fermion
ψ, Rψk (i∂/) = (

√

Pk(−∂2)/(−∂2)− 1)i∂/.
The cutoff-corrected Legendre transform Γk = Wk −

∫

d4xJφ−∆Sk(φ) defines the effective average action Γk

satisfying the renormalization group equation [14, 15]

∂tΓk =
1

2
STr

[

(

δ2Γk

δφδφ
+Rk

)−1

∂tRk

]

, (2)

where t = ln k and STr denotes a functional trace, in-
cluding a factor −1 for fermions. We will restrict our
considerations to functionals Γk of the following form

Γk

[

gµν ,φ,ψ, ψ̄
]

=

∫

d4x(Lb+Lf +Lg+LGF +Lgh) . (3)

The theory contains a single scalar field with Lagrangian

Lb =
√
g(12Zφ∇

µφ∇µφ+ V (φ)) .
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I. INTRODUCTION

The lack of renormalizability of Einstein’s theory does
not preclude the possibility of calculating quantum cor-
rections to low energy processes due to graviton loops
[1]. This effective field theory approach has been applied
to calculate corrections to the gravitational potential [2]
and the running of Newton’s constant [3–5]. Graviton
loops also contribute to the beta functions of matter cou-
plings. This has been studied in the case of a scalar field
in [6]. More recently, there has been considerable interest
in (and controversy about) the corrections to the beta
function of gauge couplings [7]. Aside from the intrin-
sic theoretical interest, such effects could have obvious
applications to grand unified theories, whose characteris-
tic energy scale is not too distant from the Planck scale,
where gravity becomes strong. In fact, it has been argued
recently [8] that in the determination of the GUT scale,
quantum gravitational effects could be more important
than two loop effects.
With these motivations in mind, and in the same spirit,

we will calculate here the gravitational effects on the beta
functions of a simple Yukawa theory, consisting of one
scalar and Nf fermion fields. We will do our calculations
in flat Euclidean space, and therefore we will not calcu-
late here the effect that the matter has on the running
of the gravitational couplings (e.g. Newton’s constant),
but at least in the limit where the matter couplings are
negligible, this effect is easily calculable [9].
In addition to the above, there is also another reason

for studying this problem. If we look for a fundamental,
as opposed to effective, theory of quantum gravity, there
is now the concrete possibility that a purely field theo-
retic solution can be obtained, provided that the renor-
malization group has a fixed point with a finite number of
UV attractive (relevant) directions. A theory with these
properties is said to be asymptotically safe and has the
same good properties (finiteness, predictivity) as, for ex-
ample, QCD. The failure of perturbation theory means
that the Gaussian fixed point of gravity does not have the
desired properties. Work done in the last ten years has
provided rather convincing evidence for the existence of a
suitable nontrivial fixed point in pure gravity; see [10] for
reviews. It is then important to make sure that this fixed
point persists also when interacting matter is brought in.

In the case of scalar interactions, this was discussed in
[11]. It was shown that there exists a “Gaussian mat-
ter fixed point”, where the gravitational couplings are
nonzero and slightly shifted relative to pure gravity, but
all scalar selfinteractions are asymptotically free or zero.
Our results imply that such a fixed point exists also in
the presence of a Yukawa coupling.
Finally we mention that asymptotic safety may play

a role also in the standard model. Some evidence for a
nontrivial fixed point in Yukawa systems has appeared
recently [12]. If this was the case, then the calculations
presented here are necessary to complete the picture by
including also the gravitational interactions.

II. YUKAWA SYSTEM

In this section we set up the calculation. The flow of
the renormalized couplings will be computed on a flat
Euclidean background using an exact flow equation. An
infrared cutoff, denoted k, is introduced via a cutoff term
∆Sk, in order to define a scale dependent generating
functional of connected Green’s functions:

Wk[J ] = − log

∫

[dΦ]e−S[Φ]−
∫
JΦ−∆Sk[Φ] . (1)

In flat space the cutoff term has the general form
∆Sk[Φ] =

1
2

∫

d4xΦRΦ
k (−∂2)Φ and RΦ

k (z) is constructed
so as to suppress the contributions to the functional inte-
gral from the infrared modes of the field Φ. For a scalar φ,
we choose Rφk (z) = k2r(z/k2), with r(y) = (1−y)θ(1−y)
[13], leading to the substitution −∂2 = z → Pk(z) =
z+k2r(z/k2), a kind of cutoff-propagator. For a fermion
ψ, Rψk (i∂/) = (

√

Pk(−∂2)/(−∂2)− 1)i∂/.
The cutoff-corrected Legendre transform Γk = Wk −

∫

d4xJφ−∆Sk(φ) defines the effective average action Γk

satisfying the renormalization group equation [14, 15]

∂tΓk =
1

2
STr

[

(

δ2Γk

δφδφ
+Rk

)−1

∂tRk

]

, (2)

where t = ln k and STr denotes a functional trace, in-
cluding a factor −1 for fermions. We will restrict our
considerations to functionals Γk of the following form

Γk

[

gµν ,φ,ψ, ψ̄
]

=

∫

d4x(Lb+Lf +Lg+LGF +Lgh) . (3)

The theory contains a single scalar field with Lagrangian

Lb =
√
g(12Zφ∇

µφ∇µφ+ V (φ)) .
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• Moving to dimensionless quantities (LPA case) 
    and renaming                  one gets…
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h⇣
�(2)
k [�] + R̂k
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See also Zanusso, Zambelli, Vacca, Percacci 2010
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LPA flow equations:

Parameters of the problem: ( d , Xf )

Fixed points: search for scaling solutions 
No analytic solutions.  
Strategy:

• Numerical evolution from the origin                                                            Morris, Codello, … 
• Numerical evolution from the asymptotic region                                         Morris 
• Polynomial truncations                                                                                 Everyone

Symmetries: v even and h odd

h(0)=0v0(0) = 0

v̇ = ḣ = 0



Numerical evolution from the origin

We provide the boundary (initial condition): v0(0) = 0 , h(0) = 0

Let us show how far a numerical resolutor can evolve from the origin before encountering a singularity. 
!
Example with

and

5

2
<

8

3
< 3 < 4Xf = 1

d

d:  4    3.98   3.9    3.75    3.5

d:  3.25    3   2.9    8/3    2.57

�5 < h1 < 5

4 and  8/3 are critical for both potentials, 3 and 5/2 are critical only for the scalar potential.

v00(0) = � , h0(0) = h1

�0.5 < � < 0.5



Numerical evolution from the origin

d=2.57

Let’s zoom in two of them

d=3

<
8

3



Numerical evolution from the origin

d:    2.57    2.51   

�5 < h1 < 5

�0.5 < h1 < 0.5

d:  2.57 

From this kind of plots a sharp peak can be a signal of the presence of a possible global solution. 
Other approaches can confirm or reject such a fact.

-4 -2 2 4
h1

0.0

0.5

1.0

1.5

2.0
�c

Section for d=2.57 at constant 
 a new possible solution appears 
for d<8/3

All known scaling solutions of the pure scalar theory for a continuous d are visible.

�0.5 < � < 0.5

�0.1 < � < 0.1

�



Numerical evolution from the asymptotic region

The initial conditions are determined by the asymptotic behaviour (              ) for the fixed point 
solution of the system of ODE’s

which is of the form

⇣
Ô � �

⌘
�f = 0 (I.12)

where the we define the vector �fT = (�v, �h2) and Ô is the correspond di↵erential operator. In

the search of the spectrum of this operator the overall normalisation of the eigenvector �f plays

no role. Therefore the asymptotic form of �f depends only on a relative real parameter which

we choose to be a constant � multiplying the leading term of �h2.

Let us show in the specific case of d = 3 the asymptotic behavior of the solution of the

linearised equations around a FP obtained solving the previous equations for large � taking

advantaged on the known asymptotic behaviour for v and h2 at the fixed point:

�vAsympt = �6�2� + ��2��4
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��

13500⇡2A2B2
+O

⇣
��8�2�

⌘
(I.13)

�h2,Asympt = ��4�2� � ��2��6

 �
2�2�11�+ 15

�
(20A+B)

16875⇡2A3
+
�
�
240A�+B

�
2�2 + 5��6

��

13500⇡2A2B

!

+O
⇣
��10�2�

⌘
(I.14)

Further considerations on the existence of other contributions (suppressed) to the asymptotic

behavior (exponentially)?

Note that in the numerical analysis we consider several subleading terms of the asymptotic

power-like expansion.

A. Critical dimensions

Canonical dimensions of the scalar field d� = d
2�1 and of the fermion field d = d�1

2 tells

that the interactions of the kind �n �2n and yn �2n+1 ̄ 

d(v)c (n � 2) =
2n

n� 1
= 4 , 3 ,

8

3
,
5

2
,
12

5
, · · · (I.15)

d(h)c (n � 0) =
4(n+ 1)

2n+ 1
= 4 ,

8

3
,
12

5
, · · · (I.16)

B. Classical scaling

In the asymptotical region |�| ! 1 the behaviour is dictated by the classical scaling

0 = �dv +
d� 2 + ⌘�

2
� v0 (I.17)

5

The symmetry conditions at the origin (                                          ) are used to fix the free parameters A and B.v0(0) = 0 , h(0) = 0

This time let us analyse the case d=3 for          in the range 0.001 < Xf < 3Xf

For this analysis we stop to refine the A, B values when we reach 
Analysing the  two dimensional vector field                          generated by the ODE’s in most cases in very few 
steps we converge to the solution within the prescribed error.

v1 = v0(0) , h0 = h(0) ' 10�8

(v1, h0)(A,B)

• we then cross check the results.

Then for any solution we have to find the eigenvalues of the operator of the linearized beta

functional at the fixed point which give the critical exponents of the system. We shall use two

approaches.

In the first one we study the system of beta functions of the truncated polynomials for v

and h at the FP solution. After having determined in this approximation which fixed point is

related to the global solution we can study the stability matrix and determine its spectrum.

A second approach, not a↵ected by the approximations induced by the polynomial trunca-

tions, consists in studying directly the linear system of ODEs for the perturbations at the fixed

point in order to extract he eigenvalues of the corresponding operator. Then one imposes the

symmetry conditions and derive the analytic asymptotic behaviour of the perturbations. Fi-

nally one can study the numerical evolution from the large � region. In this way, imposing the

symmetry one can fix the two free parameters left, one being the eigenvalue of the perturbation.

We find that, due to the limitations of the precision of the numerical fixed point solutions,

we have a much better control of the eigenvalues with the first method.

Let us define ↵ = 2/(d� 2). The asymptotic behavior of the solution of the FP equation in

the LPA are given by
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The linearised equations are constructed by substituting into the fixed point equations

v(�) = v⇤(�) + ✏�v(�) , h2(�) = h⇤2(�) + ✏�h2(�) (I.9)

and keeping the first term in ✏ for ✏ ⌧ 1 one has the eigenvalue problem
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↵ =
2

d� 2

Therefore by construction the corresponding global scaling solutions do exist in the LPA.

The evolution towards the origin is started at a relative large value                    using a large order 
asymptotic expansion (several terms).

� = �
max

For larger values of         more accuracy in the numerical evolution is required since derivatives of the functions 
appears to grow.               

Xf



Numerical evolution from the asymptotic region
Some properties of the fully non trivial LPA scaling solutions in d=3:  
if                     the scalar is in the broken phase.Xf < 1.64

Illustrate with plots:
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Polynomial truncations
For d=3 they may provide a reasonable approximation. We have considered expansions both around the origin  
and a non trivial vacuum of the scalar field. We have worked with

u (⇢) = v(�) h2(⇢) = h2(�) ⇢ =
�2

2
     ,          ,

Expansions: 
around the origin: 
!
!
around a non trivial vacuum:

u(⇢) =
NvX

n=0

�k

k!
⇢k

u(⇢) = �0 +
NvX

n=2

�k

k!
(⇢� )k

0 = (⌘ � 1)h+
d� 2 + ⌘�

2
�h0 (I.18)

And for ⌘� = ⌘ = 0 the solutions

v ⇠ �
2d
d�2 (I.19)

h ⇠ �
2

d�2 (I.20)

Only for d = 4 the linear truncation h(�) = y � is ok at infinity.

C. Wetterich

@t�k[�] =
1

2
STr

h⇣
�
(2)
k [�] + R̂k

⌘
@tR̂k

i
(I.21)

Per l’espansione polinomiale in fase simmetrica

(Nv, Nh) (4, 3) (5,4) (6,5) (8,7) (9,8)

�1 -0.1209 -0.1315 -0.1339 -0.1315 -0.1309

�2 10.60 11.05 11.16 11.09 11.06

�3 293.2 339.6 351.0 342.7 340.1

y1 26.84 28.38 28.76 28.53 28.44

y2 986.6 1161 1206 1178 1167

✓1 1.354 1.262 1.222 1.225 1.236

✓2 -1.637 -1.047 -0.7554 -0.5809 -0.5893

✓3 -2.427 -2.063 -1.738 -1.424 -1.448

Questa e’ la prima tabella

6

(Nv, Nh) (5, 4) (6,5) (7,6) (8,7) (9,8)

 0.01000 0.01013 0.01006 0.01006 0.01007

�2 15.58 15.17 15.30 15.28 15.28

�3 521.8 498.9 503.0 502.0 502.3

y1 44.59 43.00 43.51 43.44 43.43

y2 1924 1818 1842 1837 1837

✓1 1.158 1.125 1.138 1.138 1.137

✓2 -0.7134 -0.6661 -0.6262 -0.6407 -0.6424

✓3 -1.841 -1.530 -1.530 -1.543 -1.558

Questa e’ la seconda tabella.

7

Polynomial analysis 
of the fully non trivial 
fixed point. 
!
     are minus the leading 
eigenvalues of the stability 
matrix
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Polynomial analysis
In d=3 we find that the family of non trivial 
fixed point solutions encounters a singularity  
at           . In particular we find thatXf = 4

For              we have not been able to find a solution from the numerical analysis of the system of ODE’s.

3.6 3.7 3.8 3.9 4.0
Xf

10

15

20
y1

y1 ⇠ 1

4�Xf

Xf > 4

✓1 ! 1

Xf ! 4

 Standard Yukawa interaction 
 Nh=1 (d=3).

Case d=4: A polynomial analysis with a standard Yukawa term (Gies, Scherer 2010)  
was showing that for               there could be a non trivial fixed point solution.Xf ⌧ 1

In our approach, with a much larger truncation, we find that such a possibility is excluded in this truncation. 
We find only the gaussian fixed point. To match their analysis we show here the case Xf = 0.4

Similar plots for d>4 
only gaussian solution

(Nv, Nh) (5, 4) (6,5) (7,6) (8,7) (9,8)

 0.01000 0.01013 0.01006 0.01006 0.01007

�2 15.58 15.17 15.30 15.28 15.28

�3 521.8 498.9 503.0 502.0 502.3

y1 44.59 43.00 43.51 43.44 43.43

y2 1924 1818 1842 1837 1837

✓1 1.158 1.125 1.138 1.138 1.137

✓2 -0.7134 -0.6661 -0.6262 -0.6407 -0.6424

✓3 -1.841 -1.530 -1.530 -1.543 -1.558

Questa e’ la seconda tabella.

Last table related to linear Yukawa coupling

(Nv, Nh) (4, 1) (5,1) (6,1) (8,1) (9,1)

�1 -0.1602 -0.1742 -0.1765 -0.1720 -0.1716

�2 7.128 7.204 7.214 7.193 7.191

�3 121.9 134.7 136.7 132.7 132.4

y1 11.35 11.06 11.01 11.11 11.11

✓1 1.492 1.436 1.417 1.431 1.435

✓2 -1.541 -1.184 -0.9628 -0.8584 -0.9049

✓3 -12.27 -8.744 -6.395 -3.847 -3.415

D. large Xf limit

In the large Xf limit, since the potential v scales with Xf the flow equations simplify dras-

tically

0 = �dv +
d� 2

2
� v0 � Xf Cd

1 + h2
(I.21)

0 = �h+
d� 2

2
�h0 (I.22)

Solutions are:

h(�) = c1 �
↵ (I.23)

7

Leading critical exponent 
almost 20% larger.
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Eigenperturbations of the ODE’s

Perturbing the flow equations around a  
global scaling solution (           )  as 
one can write for  
an eigenvalue problem

• we then cross check the results.

Then for any solution we have to find the eigenvalues of the operator of the linearized beta

functional at the fixed point which give the critical exponents of the system. We shall use two

approaches.

In the first one we study the system of beta functions of the truncated polynomials for v

and h at the FP solution. After having determined in this approximation which fixed point is

related to the global solution we can study the stability matrix and determine its spectrum.

A second approach, not a↵ected by the approximations induced by the polynomial trunca-

tions, consists in studying directly the linear system of ODEs for the perturbations at the fixed

point in order to extract he eigenvalues of the corresponding operator. Then one imposes the

symmetry conditions and derive the analytic asymptotic behaviour of the perturbations. Fi-

nally one can study the numerical evolution from the large � region. In this way, imposing the

symmetry one can fix the two free parameters left, one being the eigenvalue of the perturbation.

We find that, due to the limitations of the precision of the numerical fixed point solutions,

we have a much better control of the eigenvalues with the first method.

Let us define ↵ = 2/(d� 2). The asymptotic behavior of the solution of the FP equation in

the LPA are given by

vasympt(�) ' A�2↵+2 + ��2↵Cd (B � 2AXf (↵+ 1)(2↵+ 1))

(↵+ 1)(2↵+ 1)2AB(2 + d)
+ · · · (I.7)

h2asympt(�) ' B �2↵ + ��2�2↵ Cd ↵(4↵(2↵+ 1)A+B)

2A2(↵+ 1)(2↵+ 1)2(2 + d)
+ · · · (I.8)

The linearised equations are constructed by substituting into the fixed point equations

v(�) = v⇤(�) + ✏�v(�) , h2(�) = h⇤2(�) + ✏�h2(�) (I.9)

and keeping the first term in ✏ for ✏ ⌧ 1 one has the eigenvalue problem

0 = (�� d)�v +
1

2
(d� 2)� �v0 + Cd

✓
Xf

(1 + h2)2
�h2 � 1

(1 + v00)2
�v00
◆

(I.10)
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◆
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✏ ⌧ 1

In particular

which is of the form

⇣
Ô � �

⌘
�f = 0 (I.12)

where the we define the vector �fT = (�v, �h2) and Ô is the correspond di↵erential operator. In

the search of the spectrum of this operator the overall normalisation of the eigenvector �f plays

no role. Therefore the asymptotic form of �f depends only on a relative real parameter which

we choose to be a constant � multiplying the leading term of �h2.

Let us show in the specific case of d = 3 the asymptotic behavior of the solution of the

linearised equations around a FP obtained solving the previous equations for large � taking

advantaged on the known asymptotic behaviour for v and h2 at the fixed point:

�vAsympt = �6�2� + ��2��4

�
450A2�Xf +B2

��2�2 + 11�� 15
��

13500⇡2A2B2
+O

⇣
��8�2�

⌘
(I.13)

�h2,Asympt = ��4�2� � ��2��6

 �
2�2�11�+ 15

�
(20A+B)

16875⇡2A3
+
�
�
240A�+B

�
2�2 + 5��6

��

13500⇡2A2B

!

+O
⇣
��10�2�

⌘
(I.14)

Further considerations on the existence of other contributions (suppressed) to the asymptotic

behavior (exponentially)?

Note that in the numerical analysis we consider several subleading terms of the asymptotic

power-like expansion.

A. Critical dimensions

Canonical dimensions of the scalar field d� = d
2�1 and of the fermion field d = d�1

2 tells

that the interactions of the kind �n �2n and yn �2n+1 ̄ 

d(v)c (n � 2) =
2n

n� 1
= 4 , 3 ,

8

3
,
5

2
,
12

5
, · · · (I.15)

d(h)c (n � 0) =
4(n+ 1)

2n+ 1
= 4 ,

8

3
,
12

5
, · · · (I.16)

B. Classical scaling

In the asymptotical region |�| ! 1 the behaviour is dictated by the classical scaling

0 = �dv +
d� 2 + ⌘�

2
� v0 (I.17)
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Further considerations on the existence of other contributions (suppressed) to the asymptotic
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Note that in the numerical analysis we consider several subleading terms of the asymptotic

power-like expansion.
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d(h)c (n � 0) =
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B. Classical scaling

In the asymptotical region |�| ! 1 the behaviour is dictated by the classical scaling

0 = �dv +
d� 2 + ⌘�

2
� v0 (I.17)
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• we then cross check the results.

Then for any solution we have to find the eigenvalues of the operator of the linearized beta

functional at the fixed point which give the critical exponents of the system. We shall use two

approaches.

In the first one we study the system of beta functions of the truncated polynomials for v

and h at the FP solution. After having determined in this approximation which fixed point is

related to the global solution we can study the stability matrix and determine its spectrum.

A second approach, not a↵ected by the approximations induced by the polynomial trunca-

tions, consists in studying directly the linear system of ODEs for the perturbations at the fixed

point in order to extract he eigenvalues of the corresponding operator. Then one imposes the

symmetry conditions and derive the analytic asymptotic behaviour of the perturbations. Fi-

nally one can study the numerical evolution from the large � region. In this way, imposing the

symmetry one can fix the two free parameters left, one being the eigenvalue of the perturbation.

We find that, due to the limitations of the precision of the numerical fixed point solutions,

we have a much better control of the eigenvalues with the first method.

Let us define ↵ = 2/(d� 2). The asymptotic behavior of the solution of the FP equation in

the LPA are given by

vasympt(�) ' A�2↵+2 + ��2↵Cd (B � 2AXf (↵+ 1)(2↵+ 1))

(↵+ 1)(2↵+ 1)2AB(2 + d)
+ · · · (I.7)

h2asympt(�) ' B �2↵ + ��2�2↵ Cd ↵(4↵(2↵+ 1)A+B)

2A2(↵+ 1)(2↵+ 1)2(2 + d)
+ · · · (I.8)

The linearised equations are constructed by substituting into the fixed point equations

v(�) = v⇤(�) + ✏�v(�) , h2(�) = h⇤2(�) + ✏�h2(�) (I.9)

and keeping the first term in ✏ for ✏ ⌧ 1 one has the eigenvalue problem
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2
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• we then cross check the results.

Then for any solution we have to find the eigenvalues of the operator of the linearized beta

functional at the fixed point which give the critical exponents of the system. We shall use two

approaches.

In the first one we study the system of beta functions of the truncated polynomials for v

and h at the FP solution. After having determined in this approximation which fixed point is

related to the global solution we can study the stability matrix and determine its spectrum.

A second approach, not a↵ected by the approximations induced by the polynomial trunca-

tions, consists in studying directly the linear system of ODEs for the perturbations at the fixed

point in order to extract he eigenvalues of the corresponding operator. Then one imposes the

symmetry conditions and derive the analytic asymptotic behaviour of the perturbations. Fi-

nally one can study the numerical evolution from the large � region. In this way, imposing the

symmetry one can fix the two free parameters left, one being the eigenvalue of the perturbation.

We find that, due to the limitations of the precision of the numerical fixed point solutions,

we have a much better control of the eigenvalues with the first method.

Let us define ↵ = 2/(d� 2). The asymptotic behavior of the solution of the FP equation in

the LPA are given by
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The linearised equations are constructed by substituting into the fixed point equations

v(�) = v⇤(�) + ✏�v(�) , h2(�) = h⇤2(�) + ✏�h2(�) (I.9)
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4For d=3 the perturbations have the following asymptotic behaviour after rescaling by a global factor

which is of the form

⇣
Ô � �

⌘
�f = 0 (I.11)

where the we define the vector �fT = (�v, �h2) and Ô is the correspond di↵erential operator. In

the search of the spectrum of this operator the overall normalisation of the eigenvector �f plays

no role. Therefore the asymptotic form of �f depends only on a relative real parameter which

we choose to be a constant � multiplying the leading term of �h2.

Let us show in the specific case of d = 3 the asymptotic behavior of the solution of the

linearised equations around a FP obtained solving the previous equations for large � taking

advantaged on the known asymptotic behaviour for v and h2 at the fixed point:

�vAsympt = �6�2� + ��2��4

�
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Further considerations on the existence of other contributions (suppressed) to the asymptotic

behavior (exponentially)?

Note that in the numerical analysis we consider several subleading terms of the asymptotic

power-like expansion.

A. Critical dimensions

Canonical dimensions of the scalar field d� = d
2�1 and of the fermion field d = d�1

2 tells

that the interactions of the kind �n �2n and yn �2n+1 ̄ 

d(v)c (n � 2) =
2n

n� 1
= 4 , 3 ,

8

3
,
5

2
,
12

5
, · · · (I.14)

d(h)c (n � 0) =
4(n+ 1)

2n+ 1
= 4 ,

8

3
,
12

5
, · · · (I.15)

B. Classical scaling

In the asymptotical region |�| ! 1 the behaviour is dictated by the classical scaling

0 = �dv +
d� 2 + ⌘�

2
� v0 (I.16)
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which is of the form

⇣
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⌘
�f = 0 (I.11)

where the we define the vector �fT = (�v, �h2) and Ô is the correspond di↵erential operator. In
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behavior (exponentially)?
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power-like expansion.
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2�1 and of the fermion field d = d�1

2 tells

that the interactions of the kind �n �2n and yn �2n+1 ̄ 
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B. Classical scaling

In the asymptotical region |�| ! 1 the behaviour is dictated by the classical scaling
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which is of the form

⇣
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�f = 0 (I.11)

where the we define the vector �fT = (�v, �h2) and Ô is the correspond di↵erential operator. In
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Numerical analysis of eigenperturbations (incomplete)

Imposing the asymptotic boundary conditions as well as the symmetry conditions at the origin we perform 
the numerical evolution. The two symmetry conditions should constraint the arbitrary values for     and 

We find that imposing the symmetry condition within the same accuracy used for the search of the fixed  
point solution only restrict the values of      and      within a piece of curve. 

� �

� �

-10 -5 5 10
�

1.15

1.20

1.25

�

For the leading eigenvalue the result of this analysis together 
with the ones of the two polynomial truncations is not accurate 
enough.  
Need to repeat the analysis with a higher precision. 



Large number of fermions.

(Nv, Nh) (5, 4) (6,5) (7,6) (8,7) (9,8)

 0.01000 0.01013 0.01006 0.01006 0.01007

�2 15.58 15.17 15.30 15.28 15.28

�3 521.8 498.9 503.0 502.0 502.3

y1 44.59 43.00 43.51 43.44 43.43

y2 1924 1818 1842 1837 1837

✓1 1.158 1.125 1.138 1.138 1.137

✓2 -0.7134 -0.6661 -0.6262 -0.6407 -0.6424

✓3 -1.841 -1.530 -1.530 -1.543 -1.558

Questa e’ la seconda tabella.

D. large Xf limit

In the large Xf limit, since the potential v scales with Xf the flow equations simplify dras-

tically

0 = �dv +
d� 2

2
� v0 � Xf Cd

1 + h2
(I.21)

0 = �h+
d� 2

2
�h0 (I.22)
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In the limit                 , since the scalar potential scales with       , the fixed point equations simplifies toXf ! 1 Xf

d=4 :
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Solutions are:
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↵ =
2

d� 2

Eigenperturbations
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In d = 4

v(�) = c2�
4 � Cd

4
+

Cd

2
c21�

2 +
Cd

2
c41�

4 log
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◆
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h(�) = c1 � (I.26)
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Solution

h(�) = c1 � (I.26)

Eigenperturbations

0 = �(d+ �)�v +
1
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(d� 2)��v0 +
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�h(�) = �
2(�+1)
d�2 (I.30)
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d=4:  To have       well behaved in the origin  � = �1, 0, · · ·�h

In this limit probably multifermions interactions are important.



Conclusions

• We have considered a Yukawa system in the LPA and shown the 
      existence of the scaling solution beyond a polynomial truncations.

• The problem can be analyzed as a function of two parameters d and 
     When d approaches 2 a growing number of  scaling solutions are found 
     which should correspond to more general multi critical theories.

Xf

• Truncation with multifermion interactions should give some quantitative  
    corrections but the pattern found should not change for d>2. 

• We find that the analysis with a polynomial truncation can lead  
     sometimes to wrong results, i.e. for the d=4 case.       

• Also a general analysis in the next order in the derivative expansion 
    should be probably carried on. 

• More complicated QFT models which gets closer to SM should probably  
    be analyzed taking into account for Yukawa terms such kind of truncations.


