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Introduction

QFT of one real scalar field and Dirac fermions (Ny,d,) Xy = Nyd,
Symmetries: U(Ny) Z

1 D . 2l
Typically the lagrangian density one considers is: £ = 2 o' p0,¢ + V(e) + VYo iy vy
and a polynomial form of the scalar potential 1s used.
Gies, Scherer 2010 (d=4) , Rosa, Vitale, Wetterich 2001 , Sonoda 2011 (d=3), .....

For a SUSY model both the scalar potential and Yukawa interactions in the on shell lagrangian density

are dependent on the same function. A study in term of polynomial truncations has been done.
Synatschke, Braun, Wipf 2010 (d=3)

o,y S
Lon = 50,0"6 — <9 — =W(g) — =W ()P

Here we shall study this QFT using the following truncation where we neglect terms related to 2n fermion
interactions (n>1) which may exist depending on (N, d,)

i 1 e . =
Tk |0, %, 9] =/d433‘ (5 ok 07000 + Vi(®) + Zy k07"i0,% + i Hy(P) ¥ %D)
and essentially limiting ourself to the LPA (Z’s=1)

A very recent work for quark-mesonic interactions also considers more general Yukawa interactions
Pawlowski, Rennecke 1403.1179




Introduction

Qualitative observations

e (Critical dimensions: from field’s canonical dimensions dy = %—1 dy = %

Depending on the dimension there are several possible relevant operators

2n Rt ] 2
2n (U = =5 TSR i
¢ dC (n v ) n — 1 Y 37 3 Y 2 Y, 5 9
3 4(n + 1) 8 12
2n+1 Ay Sl

e (lassical scaling behaviour at the fixed point

For dimensionless quantities the leading asymptotic behaviour (|¢| — ©0) is determined by

d—2 d—2+
0=—dv+ 2+n¢¢vl 0= (= L) hit 5 %gbh’
; _2d_ 2
In the LPA since 7)¢ = 1y =0 V ~ -2 h ~ ¢d—2

Only for d=4 the linear truncation h(¢) = y ¢ has the correct behaviour at  [¢| — o0
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Functional RG approach

We shall study the flow of the Euclidean Average Effective Action Wetterich

e In terms of a field multiplet @ containing bosonic and fermionic d.o.f. the flow equation reads
i S
= (¢, ¥, ¥)

Or4[@] = SSTe [ (T (8] + R ) 00 ] 0, = ko

where through the cutoff operator Ry, one can control the contributions of the low scale fluctuations
in the functional integral.

e W loy the optimised cutoff [Litim].
e employ the optimised cutoff [Litim] Rﬁf(Z) = kQT(_z/kQ)
For the scalar field: R,f(—(‘ﬁ) r(y) = (1—y)0(1—y)
For the fermion fields: RY(i@) = (\/Py(— (—=02) — 1)@ Pr(z) = z—l—k?r(z/k@)

* Moving to dimensionless quantities (LPA case)

and renaming ¢ — ¢ one gets... Q}E :~ bkt 2
v(@) = V(¢) k™
h(¢) = H(¢)/k

See also Zanusso, Zambelli, Vacca, Percacci 2010
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LPA flow equations:

S U Wi 1 Xy
== dv 5 oxy) +Cd(1+v” 1+h2)

: die- 20

h:—h+?¢h'+0d

2h (B')° ( 21
(14 h2)2 (1 + ")

1 h//
_|_ it
(1+ h2) (1 +v")? (1+v")?

Symmetries: v even and h odd v'(0) =0
(dv Xy )

Fixed points: search for scaling solutions v=h=0

No analytic solutions.

Strategy:

* Numerical evolution from the origin
e Numerical evolution from the asymptotic region
e Polynomial truncations

Morris, Codello, ...
Morris
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Other approaches can confirm or reject such a fact.

en T s p—

From this kind of plots a sharp peak can be a signal of the presence of a possible global solution.

All known scaling solutions of the pure scalar theory for a continuous d are visible. ;

Section for d=2.57 at constant 0
a new possible solution appears
for d<8/3
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Numerical evolution from the asymptotic region

The 1nitial conditions are determined by the asymptotic behaviour (|¢| — oo) for the fixed point
solution of the system of ODE’s

_9qCa (B —2AXs(a+1)(2a + 1))

asym ~ A e
B
o 9 9, Cga(da(2a+1)A+ B d— 2
hgsympt<¢)§B¢2 + ¢ ? el g0l ) ) Aas e

2A42(a 1 1)(2a + 1)2(2 + d)

The evolution towards the origin is started at a relative large value ¢ = ¢n.x using a large order

. asymptotic expansion (several terms).

' The symmetry conditions at the origin (v'(0) =0 , h(0) = 0 ) are used to fix the free parameters A and B.

|

]
|
}
|
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' For larger values of X ; more accuracy in the numerical evolution is required since derivatives of the functions

: This time let us analyse the case d=3 for X ¢ in the range 0.001 < X, <3

| For this analysis we stop to refine the A, B values when we reach  v; = v’ (0), hg = h(0) ~107°

. Analysing the two dimensional vector field (vq, ho)(A, B) generated by the ODE’s in most cases in very few
' steps we converge to the solution within the prescribed error.

Therefore by construction the corresponding global scaling solutions do exist in the LPA.

appears to grow.

(
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Numerical evolution from the asymptotic region

Some properties of the fully non trivial LPA scaling solutions in d=3:

if X; <1.64 the scalar is in the

[llustrate with plots:

v(¢) . h(9)

v// (0)

M 2.0

b0

h'(0)

e

h' (o)

0.001 < Xy < 3 : minimum of the scalar potential in ¢

Locus of the solutions in the plane
(v"(0),R'(0)) as function of X

(v'(¢0) =0)
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Polynomial truncations

For d=3 they may provide a reasonable approximation. We have considered expansions both around the origin
and a non trivial vacuum of the scalar field. We have worked with

- A > i —ee

—

2is ol 2 TR
u(p)=v(@) , halp) = B2 o 0=2
Expansions: Ny g AL
R o Nk K 4y Ik k
around the origin: ulp=ye P ha(p) =Y ol
n=0 n=1
Ny A Np, Y
k k k k k
ulp) =ho+ > Tr(p—r) ha(p) = > 2 | (= r)* = (=1)"]
AL e B
. . PIIVD. F4HARRBVASVE S SV TV OB/ AP ODY
Polynomlal analy51s ;(NU,Nh) 4,3) | 54) | 6,5) | 8,7) | (9,8) (Ny, Np)| (5,4) | (6,5) | (7.6) | (8,7) | (9,8)
of the fully non trivial M |-0.1209/-0.1315]-0.1339|-0.1315|-0.1309 P 0.01000{0.01013(0.010060.01006|0.01007
fixed point Ao 10.60 |11.05 [11.16 |11.09 [11.06 de  |15.58 [1517 [15.30 [15.28 |15.28
' A3 |203.2 (339.6 (3510 [342.7 [340.1 A3 |521.8 [498.9 [503.0 [502.0 |502.3
. . ui 26.84 (2838 [28.76 [28.53 |28.44 y1 4459 |43.00 |43.51 (4344 |43.43
9@' arc minus the leadlng Yo 986.6 |1161 |1206 |1178 |1167 o 1924 [1818 |1842 |1837 |1837
eigenvalues of the stability 01 1.354 |1.262 [1.222 [1.225 |1.236 61 1158|1125 |1.138 |1.138 |1.137
. 0 -1.637 1-1.047 |-0.7554|-0.5809|-0.5893 0o -0.7134 |-0.6661 [-0.6262 |-0.6407 |-0.6424
matrix 65 |-2427 |-2.063 |-1.738 |-1.424 |-1.448 Oa .7 | LSO 50y - Sy O
Comparison with y
. 3 2
exact solution V(o) V(o) h2(o)

0.0005
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Polynomial analysis :

1 20
2 by Y16
~ In d=3 we find that the family of non trivial e :
fixed point solutions encounters a singularity Xf—4 :
at X; = 4. In particular we find that 0 — 1

! For X, > 4 we have not been able to find a solution from the numerical analysis of the system of ODE’s.

. Standard Yukawa interaction §®.Ny| @1 | 61| 61 | G1 | (01
Nh:l (d:3) A1 -0.1602|-0.1742|-0.1765|-0.1720(-0.1716
% 7128 [7.204 |7.214 |7.193 |7.191 x| h(¢)
.; Leadlng Crltlcal eXpOI’leIlt A3 121.9 |134.7 |136.7 |132.7 |132.4 i 9
‘ 11.35 |11.06 (11.01 |11.11 |11.11 L 3
{ almost 20% larger. B
01 1.492 |1.436 |[1.417 |(1.431 |1.435 e
| 0 -1.541 |-1.184 |-0.9628|-0.8584|-0.9049
' 03 -12.27 |-8.744 |-6.395 |-3.847 |-3.415

Case d=4: A polynomial analysis with a standard Yukawa term (Gies, Scherer 2010)
was showing that for X; <1 there could be a non trivial fixed point solution.

bt

In our approach, with a much larger truncation, we find that such a possibility is excluded in this truncation.
We find only the gaussian fixed point. To match their analysis we show here the case X; = 0.4

Similar plots for d>4
only gaussian solution
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Eigenperturbations of the ODE’s

Perturbing the flow equations around a

global scaling solution (e < 1) as
one can write for §f7 = (6v,5ho)
an eigenvalue problem

In particular

(O = A) 7o)
o—(A—d)5v+1(d—2)¢5v’+c ( Gk aiort oL ! 57}”)
= 2 T (1 + v)?
d 2 (3h3 +2ha +1)
=S =2 o h S e o e e o P A 2, 2
( ) 2+ (2 )¢ 2"‘ d 2( 2) < (1—|—h2)3(’0//+1) 2h%(1+h2)2(1—|—?}”)2
2 (3hy + 1) ) eeahy
I oy O ) S Ol i (1A 2 (1 + v")?

For d=3 the perturbations have the following asymptotic behaviour after rescaling by a global factor

Y VAsympt

5H, 1, (

e (2h2 (ho + 1) 2h3 — (h4) 2 (ho (v +5) + 3h3 + 1))

— $0-2A _|_¢—2)\—4(

P ¢—2>\—6 <

ho (14 h9)2 (1 + v")?

4504%8X ¢ + B? (—2X% + 11X — 15))

1350072 A% B2

(2A2—11)\ + 15) (20A + B)

Lo <¢—8—2)\>

B (240AX + B (2)% 4+ 51—6))

16875m2 A3

1350072 A% B
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Numerical analysis of eigenperturbations (incomplete)

Imposing the asymptotic boundary conditions as well as the symmetry conditions at the origin we perform
the numerical evolution. The two symmetry conditions should constraint the arbitrary values for 5 and A

We find that imposing the symmetry condition within the same accuracy used for the search of the fixed

point solution only restrict the values of 3 and ) within a piece of curve.

25}

A

For the leading eigenvalue the result of this analysis together

with the ones of the two polynomial truncations is not accurate
enough.
Need to repeat the analysis with a higher precision.
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Large number of fermions.

In the limit X — o0 | since the scalar potential scales with Xy , the fixed point equations simplifies to

il X¢Cy d— 2
=i L el = — E St
Ut G e 0 h + 5 ¢ h
Solution
e 6 d d " % 2
,U(qb)chbd_7d2F1<17_§71_§;_C%¢2) h(¢)201¢ Q:ﬂ

o Cqg  Cy Cy ¢°

i v(¢) = cag” — Tl 7¢%¢2 + 7031 *log (1 I c%¢2) h(¢) =c1 ¢
Eigenperturbations

0= —(d+ \)év + %(d — 2)p6v + ZClcff¢d_2 sh 0=—(A+1)6h+ %(d — 2)pdh’

2(d+) o
3CaXp &2 ° (d—42 —daoFy (1, I

2(A+1) 2(d+) 2¢pa—2 +1 2’

2
1

)

Sh(¢) = ¢~ -2 6v(¢) = c29p -2 — R

d=4: To have 9h well behaved in the origin A=-1,0,---

In this limit probably multifermions interactions are important.
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Conclusions

We have considered a Yukawa system in the LPA and shown the
existence of the scaling solution beyond a polynomial truncations.

The problem can be analyzed as a function of two parameters d and X;
When d approaches 2 a growing number of scaling solutions are found
which should correspond to more general multi critical theories.

We find that the analysis with a polynomial truncation can lead

sometimes to wrong results, 1.e. for the d=4 case.

Truncation with multifermion interactions should give some quantitative
corrections but the pattern found should not change for d>2.

e Also a general analysis in the next order in the derivative expansion

should be probably carried on.

More complicated QFT models which gets closer to SM should probably
be analyzed taking into account for Yukawa terms such kind of truncations. |




