#### FRG for the Bilayer Square Lattice Hubbard Model

#### Timo Reckling

Institute for Theoretical Physics Ruprecht-Karls-Universität Heidelberg

September 22, 2014



# Why look at two dimensonal fermionic Hubbard system?

- single-layer: high-T<sub>c</sub>
   superconductivity
- bilayer: multiple Fermi surfaces: electron and hole pockets
- $\bullet~$  Mott insulator  $\leftrightarrow~$  band insulator



K. Bouadim, G. G. Batrouni, F. Hébert, and R. T. Scalettar, Phys. Rev. B 77, 144527 (2008)



Zhai, Wang, & Lee, PRB 80, 064517 (2009).

# Bilayer tight binding model



$$\begin{split} H_{0} &= -t \sum_{\langle ij \rangle \sigma \lambda} \left( c^{\dagger}_{i\lambda\sigma} c_{j\lambda\sigma} + \text{h.c.} \right) - t' \sum_{\langle \langle ij \rangle \rangle \sigma \lambda} \left( c^{\dagger}_{i\lambda\sigma} c_{j\lambda\sigma} + \text{h.c.} \right) \\ &- t_{\perp} \sum_{i\sigma} \left( c^{\dagger}_{i1\sigma} c_{i2\sigma} + \text{h.c.} \right) - \mu \sum_{i\sigma\lambda} n_{i\lambda\sigma} \\ \epsilon^{\pm}_{\text{BL}}(\vec{k}) &= \pm t_{\perp} + \epsilon_{\text{SL}}(\vec{k}) \end{split}$$

## Interactions, the N-patch RG & patching scheme

$$H_{\text{int}} = U \sum_{i\lambda} n_{i\lambda\uparrow} n_{i\lambda\downarrow} + V_{\perp} \sum_{i\sigma\sigma'} n_{i1\sigma} n_{i2\sigma'}$$

- Two-particle interaction vertex: V<sub>Λ</sub>(k<sub>1</sub>, k<sub>2</sub>, k<sub>3</sub>)
- Momentum arguments include wavevector k
  <sub>i</sub> and layer λ<sub>i</sub> indices
- cf. e.g. Honerkamp, Salmhofer (2001)



- Wavevector dependence is discretized by patching of 1st BZ
- Interaction constant within one patch
- Representative momenta lie at the Fermilines

## Emerging instabilities: AF-SDW

 $V_{\Lambda_c}$  showing antiferromagnetic spin-density wave for  $t_{\perp} = 2t$  and U = 3t.  $\vec{k}_3$  fixed at patch #1.



# Results at half filling



- bilayer critical scale shows  $\exp(-t/U)$  behavior
- singlelayer  $\Lambda_C \sim \exp(-\sqrt{t/U})$  as expected from MFT & QMC

Mott insulator to band insulator transition: combined fRG-DQMC-result



 no paramagnetic phase away from U = 0 (at T=0)

6/9





- N-Patch RG useful, unbiased
- rich phase diagram:
  - $\bullet~$  Mott insulator  $\rightarrow~$  band insulator
  - $\bullet$  cuprate phenomenology  $\rightarrow$  iron pnictide phenomenology
- fRG & QMC data fit reasonably well together
- at T = 0: no paramagnetic phase away from U = 0

### Emerging instabilities: superconductors & CDW



$$H_{\rm eff}^{dSC} = V_{dSC} \sum_{\vec{k},\vec{k'}} d(\vec{k}) d(\vec{k'}) c^{\dagger}_{\vec{k'},\uparrow} c^{\dagger}_{-\vec{k'},\downarrow} c_{-\vec{k},\downarrow} c_{\vec{k},\uparrow}$$

September 22, 2014 9 / 9