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Motivation

Interest : Long time behavior of periodically driven system 

Electron pump: varying two independent parameter with phase     
        shift

tL(t) tR

✏0(t)

time-dependent onsite energy and hopping to 
left reservoir

Experiment: Switkes et al. (1999)

When the pumping parameters vary by less
than the correlation length of the fluctuations
of emissivity, ! remains essentially constant
throughout the pumping cycle and the total
charge pumped per cycle depends only on the
area enclosed by the path in parameter space,
". These straightforward observations ex-
plain many of the qualitative features of our
data.

We made measurements of adiabatic quan-
tum pumping in three similar semiconductor
quantum dots defined by electrostatic gates pat-
terned on the surface of a GaAs-AlGaAs het-
erostructure using standard electron-beam li-
thography techniques. Negative voltages (#$1
V) applied to the gates formed the dot by
depleting the two-dimensional electron gas at
the heterointerface 56 nm (device 1) or 80 nm
(devices 2 and 3) below the surface. All three
dots had lithographic areas adot # 0.5 %m2,
giving an average single particle level spacing
& ' 2()2/m*adot # 13 %V (*150 mK), where
) is Planck’s constant (h) divided by 2( and m*
is the effective electron mass. The three devices
showed similar behavior, and most of the data
presented here are for device 3. In the micro-
graph of device 1 (Fig. 1C), the three gates
marked with red circles control the conductanc-
es of the point-contact leads that connect the dot

to electronic reservoirs. Voltages on these gates
were adjusted so that each lead transmitted N #
2 transverse modes, giving an average conduc-
tance through the dot g # 2e2/h. The remaining
two gates were used to create both periodic
shape distortions necessary for pumping and
static shape distortions that allow ensemble av-
eraging (13, 14).

Except where noted, measurements were
made at a pumping frequency f ' 10 MHz,
base temperature T ' 330 mK, dot conduc-
tance g # 2e2/h * (13 kilohm)$1, and ac gate
voltage Aac ' 80 mV peak-to-peak. For com-
parison, the gate voltage necessary to change
the electron number in the dot by one is #5
mV. Measurements were carried out over a
range of magnetic field, B, from 30 to 80 mT,
which allows several quanta of magnetic
flux, +0 ' h/e, to penetrate the dot (+0/adot #
10 mT) while keeping the classical cyclotron
radius much larger than the dot size (rcyc[%m]
# 80/B[mT]).

The general characteristics of quantum
pumping, including antisymmetry about phase
difference , ' (, sinusoidal dependence on ,
(for small amplitude pumping), and random
fluctuations of amplitude as a function of per-
pendicular magnetic field, are illustrated in Fig.
1. The pumping amplitude is quantified by the

values A0 and B0, which are extracted from fits
of the form Vdot(,) ' A0 sin , - B0 (shown as
dotted lines in Fig. 1B).

Because pumping fluctuations extend on
both sides of zero (pumping occurs in either
direction) with equal likelihood for a given ,,
.A0/ is small and the pumping amplitude is
instead characterized by 0(A0), the standard
deviation of A0. For example, the data in Fig.
2B yield .A0/ ' 0.01 %V and the standard
deviation 0(A0) ' 0.4 %V. Values of 0(A0)
(Figs. 2, 3, and 4) are based on 96 independent
configurations over B, Vg1, and Vg2 (Fig. 2B).

The dependence of the pumping ampli-
tude 0(A0) on pumping frequency is linear
(Fig. 2). For the above parameters, the linear
dependence has a slope of 40 nV/MHz. Be-
cause the dot has conductance g # 2e2/h, this
voltage compensates a pumped current of 3
pA/MHz, or about 20 electrons per pump
cycle. The dependence of 0(A0) on the pump-
ing strength Aac (Fig. 3) shows that for weak
pumping, Aac 1 80 mV, 0(A0) is proportional
to Aac

2 , as expected from the simple loop-area
argument described above. For stronger
pumping, 0(A0) increases more slowly than
Aac

2 , with a crossover from weak to strong

Fig. 1. (A) Pumped dc voltage Vdot as a function of
the phase difference , between two shape-dis-
torting ac voltages and magnetic field B. Note the
sinusoidal dependence on , and the symmetry
about B' 0 (dashed white line). (B) Plot of Vdot(,)
for several different magnetic fields (solid sym-
bols) along with fits of the form Vdot ' A0 sin , -
B0 (dashed curves). (C) Schematic of the measure-
ment set-up and micrograph of device 1. The bias
current is set to 0 for pumping measurements.

Fig. 2. (A) Standard deviation of the pumping
amplitude, 0(A0), as a function of ac pumping
frequency. The slope is #40 nV/MHz for both
device 2 (solid symbols) and 3 (open symbols).
Circular symbols represent a second set of data
taken for device 3. (B) A typical data set cor-
responding to one point in (A), along with fit
parameters A0 (open bars) and B0 (solid bars)
for each configuration.
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tL(t) = t̄L +�t sin(⌦t)

✏0(t) = ✏̄0 +�✏ cos(⌦t)



Interacting resonant level model
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Interacting resonant level model

IRLM in perturbation theory:  
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RG-based resummation (Schlottmann ’80 - 82, 
Borda et al. ’07,  
Karrasch ’10 …)



Interacting resonant level model

IRLM in perturbation theory:  

TK = � 2

�⇡
= � 2

dn2
d✏0

|✏=0 ⇡

UU

� = ⇡⌧2⇢restR
⌧ ⌧

⌃ ⇠ U ln(
tL/R

� )

(Schlottmann ’80 - 82, 
Borda et al. ’07,  
Karrasch ’10 …)

-40 -20 0 20 40
¡0/(th/K)

0

0.2

0.4

0.6

0.8

1

n

U/K = 0.
U/K = 0.2

2

✏0(t)

µ = T = 0
tL(t)

⌧ � tL/R

TK

�
⇠

⇣ tL/tR
�

⌘2�2 2U/⇡�
1+2U/⇡�

RG-based resummation 

2



Interacting resonant level model

IRLM in perturbation theory:  

RG-based resummation 
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 fRG in Floquet space

Flow equation:
!

!

• Keldysh formalism for nonequilibrium 

•   

•  auxiliary reservoirs to introduce cutoff 

G0 ! G0,⇤

⇤final = 0⇤initial = 1

= tt

1PI scheme and vertex expansion:



time-dep fRG

�t = 0.05 �✏ = �t/th TK
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Floquet-Theorem

Floquet-Hamiltonian
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Floquet state solution:
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Floquet theorem: �̇(t) = A(t)�(t)
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 Floquet space formalism
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Transformation in the Floquet space : R⌦ T

R T: real space : space of time-periodic functions

|ki = e�ik⌦t|ii = c†i |0i ⌦ =
2⇡

T

Example: periodically oscillating onsite energy of two-site model

hi, k|H|j, k0i = (✏0 � k⌦)�i,j�k,k0 + ✏k0�k�i,j + th�i,j±1�k,k0

k 2 Z
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H(t) = ✏(t)d†1d1 + th(d
†
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Green’s fct + Floquet space : Wu et al. (2008)



Occupancy on an oscillating, interacting dot

Transient and long time behavior
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Pumped charge 
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Pumped charge 
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Conclusion and Outlook

• Floquet space natural choice to treat time-periodic systems 

• fRG in Floquet space resembles stationary form 

• wide range of possible system: non-adiabatic systems, different 
charge pumping situations, periodically varying bias voltage, time 
dependent interactions, arbitrary periodic variations  


