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Road map for today 

1  

▪  Imbalanced Fermi gases in 2d 
▪ Breakdown of homogeneous superfluidity 
▪ Effective potential flow with fermionic 

mean-field as initial condition 
▪ Potential quantum criticality toward Sarma-

Liu-Wilczek phase 
▪ Outlook on Larkin-Ovchinikov transitions 
 
▪ KPZ interfaces dual to attractive Lieb-

Liniger bosons in 1d 
▪ Break Galilean invariance/integrability 
▪ 1-loop flow with frequency cutoff 

technique 
▪ Hyperthermal, self-organized phase 
▪ Outlook on equilibration after quench 
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Strack and Jakubczyk, PRX (2014); Strack, arXiv:1408.1405 
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Interacting Fermi systems in two dimensions with ultracold atoms 

2  

▪  Prepare and inform correlated electron 
problems (high-Tc’s, quantum Hall) 
▪  Designer Hamiltonians 
▪  Isolated systems (no phonons) 
▪  Preparation and dynamics of (many-

body) states 
▪  Advances in cooling 

–  Quantum degeneracy regime T/TF ~ 
1-5% in reach 

▪  Advances in homogeneous trapping 
▪  Electrically neutral particles, sometimes 

good (no Coulomb, gauge fields) 
▪  Atoms are still heavy and slow 
▪  Coupling to optics/many-body photonics 
▪  Explore beyond solid-state Hilbert space 

(SU(N) magnets, spin imbalance) 

Shin, et al., Nature (2008); Zwierlein Group, CUA; Hadzibabic Group, Oxford (2013); Dalibard Group (Paris); Chin Group 
(Chicago) 
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See also 

3  

▪ Today, Session VI A: 
–  18:10 – 18:30 Herbst: Sarma phase in 

relativistic and non-relativistic systems 
–  18:50 – 19:10 Roscher: Phases of 

unitary imbalanced Fermi gases 

 



Philipp Strack | 

Controversy: Sarma-Liu-Wilczek superfluids unstable at mean-field 

4  

▪  Designer Hamiltonian 

Liu, Wilczek, PRL (2003); Strack, Jakubczyk, PRX (2014) 

▪  Pairing gap opens away from both 
Fermi surfaces 

▪ Generically first order at mean-field when gap ~ imbalance (as are 
many magnetic metals) 
▪  In 2d, mean-field qualitatively incorrect 
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▪  Example 
mean-field 
potential at 
first order 
transition at 
small T 

▪ Goldstone and amplitude 
fluctuations drive flow: 

Strack, Jakubczyk, PRX (2014); Jakubczyk, Metzner, Yamase PRL (2009) 

Full 
potential 
flow 

Fermionic 
mean-field 

Order parameter fluctuations qualitatively crucial in 2d: capture with full 
potential flow, link to fermionic initial conditions 

▪  Combined frequency and momentum cutoff 
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Obtain initial values of propagators from fermionic contractions 

6  

▪  X, and Z factors evaluated at potential minimum 

Strack, Jakubczyk, PRX (2014); Jakubczyk, Dupuis, Delemotte arXiv:1409.1374 

▪  Initial values from fermionic normal and anomalous particle-particle ladder 

K: 

L: 

Goldstone’s theorem respected and not broken during flow 
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Quantum fluctuations smoothen effective potential   
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▪ BCS regime, 
weak attraction 
▪ Renormalization 

strongest for 
regions with 
curvature 

Strack, Jakubczyk, PRX (2014) 

▪  Extension to KT phase/finite temperature desirable 
▪  Coupling to fermions including their self-energies in flow 
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Fluctuation-corrected phase diagram of imbalanced fermions in 2d 
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▪ Mean-field tri-critical points 
renormalized to T=0, hc 
▪  New quantum critical points to 

Sarma-Liu-Wilczek phase? 
▪ Goldstone phase fluctuations and 

BKT transition at finite T 
▪  Second “Lifshitz”« transition to fully 

gapped state at smaller h expected  

Strack, Jakubczyk, PRX (2014); Exp.: Ketterle, Zwierlein, Koehl,... 

3d experiments (MIT 2006): Predictions for future 2d experiment: 
▪  at least substantial suppression of 

tri-critical point 
▪  potentially anomalous 

thermodynamic/transport signatures 
at finite T in quantum critical fan 
▪  Interplay with KT vortices? 
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Non-Fermi liquid criticality at onset of Larkin-Ovchinikov pairing 
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▪  Coupled wires: 

Piazza, Zwerger, Strack, 
to appear (2014) 

▪  Cooper pairing susceptibility maximal at Q0  
▪  Amplitude-modulated pairing field: 
▪  Transition continuous on mean-field level 

Larkin, Ovchinikov (1965); see also Altshuler, Ioffe, Millis, PRB (1994) 

▪  Low-energy Lagrangian around two hot spots: 

▪  Compute quasi-particle scattering rates  
▪  Non-analyticities in pairing channel 
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Established imbalanced superfluids in 2d as plain-vanilla1 non-Fermi liquid 
‘metal’ quantum phase transitions at finite fermion density 

10  

1Excluding fractionalization/emergent gauge field scenarios and insulating states 

Spin-density 
wave 

Nematic 
Fermi surface 
deformation 

Imbalanced 
superfluids 

Collective 
momentum 

Effective 
model 

SU(2) spin 
rotation 

C4 lattice 
orientation 

U(1) number 
conservation 

Commensurate 
Q=(π,π) particle-
hole pair 
(Ferromagnet at 
Q=(0,0) also possible) 

Forward scattered 
Q=(0,0) particle-
hole pair 

Homogeneous 
Q=(0,0) particle-
particle pair 
(LOFF at finite Q also 
possible) 

Hot spots on Fermi 
surface coupled to 
magnon 

One Fermi 
surface coupled 
to photon 

Two mismatched 
Fermi surfaces 
coupled to Cooperon 

Bare collective 
dynamics 

Broken 
symmetry 

2 Goldstone 
modes 

1 Goldstone 
mode 
(Landau damping 
also possible) 

No Goldstone 
mode 

Strack, Jakubczyk, PRX (2014); Piazza, Zwerger, and Strack to appear (2014) 

▪  Larkin-Ovchinikov QCP candidate for “almost naked” QCP? 
▪ Weak violation of cosmic censorship of metals? 
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Road map for today 
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▪  Imbalanced Fermi gases in 2d 
▪ Breakdown of homogeneous superfluidity 
▪ Effective potential flow with fermionic 

mean-field as initial condition 
▪ Potential quantum criticality toward Sarma-

Liu-Wilczek phase 
▪ Outlook on Larkin-Ovchinikov transitions 
 
▪ KPZ interfaces dual to attractive Lieb-

Liniger bosons in 1d 
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Strack and Jakubczyk, PRX (2014); Strack, arXiv:1408.1405 
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Hyperthermal matter? 

12  Wikipedia, the Internet 

Turbulence: Berges, Canet, next session 
KPZ: Mathey, Kloss in parallel session VIA 
Dynamic criticality: Diehl, next session 
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KPZ interfaces dual to ground state (T=0) of attractive Lieb-Liniger bosons 

13  
Kardar, Nucl. Phys. B (1987); Brunet, Derrida, PRE (2000); Calabrese, LeDoussal, PRL (2011); Strack, Choi, Demler, 
Lukin, to appear (2014)  

▪  Noisy height fluctuations in space 
and time around growing base  
▪  Archetype of dynamic criticality 

away from equilibrium 
▪  Symmetries: Galilean, height shift,

… facilitate solutions in 1d 

▪  Bosons in 1d optical lattice; photons 
in Rydberg quantum wires 
▪  Archetype of interacting quantum 

many-body system 
▪  Integrability, many conserved 

quantities facilitate solutions (Bethe 
Ansatz, CFT’s) for ground state 

(b): (a): 
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“Broken” KPZ equation as diffusion equation with multiplicative noise 

14  

▪  Physical reality: 
–  Integrability broken 
–  Less conserved quantities 

(typically 3,4, or so) 

(b): (a): 

▪  Break Galilean invariance/symmetries by temporal correlations in noise 
▪ Map to diffusion equation with multiplicative noise 

Kardar, Parisi, Zhang, PRL (1986); Medina et al.,PRA (1989); Strack, arXiv:1408.1405 

Cole-Hopf transform 

Noise spectrum 
(scale-free inspired 
by turbulence1) 

▪  Compute fluctuations around growing average  
▪  Compare to known KPZ results 
1See e.g. Yakhot and Orszag, PRL (1986)   
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Unified noise and field integration in Keldysh path integral 

15  Frey, Täuber (1994); Forster, Nelson, Stephen, PRA (1977); Strack, arXiv:1408.1405 

▪  Random forces Gaussian: 

▪  Unified Keldysh generating functional 

▪  Tri-linear noise vertex 

▪  Propagators (GK next slide) 

Compare with Frey, Täuber (1994) in terms of h-field: 
▪  Effective Keldysh noise spectrum appears second order in noise vertex (not first) 
▪  Vertices not momentum-dependent 
▪  Temporal color in noise generate propagator corrections perturbatively 
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Perform one-loop RG with frequency cutoff technique 

16  

▪  Do not impose any fluctuation-dissipation relation on flow 
▪  Derivative expansion plus mass term for broken Galilean invariance 

▪ Wetterich equation on Keldysh contour 

Strack, arXiv:1408.1405; Sieberer et al, PRB (2014); Gezzi et al. PRB (2007); Berges et al. (2009,2013) 

▪  Noise vertex relevant in d < 4, perturbative control only for ε = 4 – d small1 

▪  fRG: crossover scales and flexibility to rescale frequencies/time 
1See also more sophisticated truncations with fRG Kloss, Canet, Delamotte, Wschebor 
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Truly far from equilibrium “rough phase” at high noise levels 

17  Strack, arXiv:1408.1405; Frey, Täuber (1994) 

▪  Response and statistical Keldysh component can scale differently 

Rough/turbulent

Smooth/massive
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▪  Rough phase: violation of thermal fluctuation dissipation relation 

d = 1 d=2 d=3

⇣dK 15.68 8.30 5.56

⇣� �6 �2 �2/3

⇣hyper 21.68 10.30 6.23

z 8 4 2.66

TABLE I: One-loop values of critical exponents in the self-organized, rough phase. Explicit violation

of a thermal fluctuation-dissipation relation is observed for which instead ⇣� = ⇣dK . The e↵ective scale-

dependent viscosity ⌫̃⇤ = ⌫0�⇤ ⇠ ⇤
⇣� diverges in entire the rough phase as ⇣� < 0.

the statistical distribution function

f (!,k) =
C(!,k)
R(!,k)

) f (sz!, sk)) 1
s2+(⇣dK�⇣�)

C
R . (6)

For larger noise vertex �̃⇤0 > �̃⇤0,c, in the rough or turbulent phase, the flow is attracted toward

a gapless fixed point which breaks the fluctuation-dissipation relation of the KPZ equation with

white noise [3, 19] as is shown in Fig. 2. The low-energy statistics in this phase is “hyperthermal”,

that is the low-energy mode power-law divergence is stronger than thermal with ⇣hyper = 6.23 in

d = 3. Such infra-red enhanced population has been obtained at non-thermal fixed points of other

field-theoretical models (see e.g. Refs. 7, 8 and references therein).

The response function exponent turns out to be negative in the rough phase

⇣� =
2(d � 4)

d
(7)

and the full set of critical exponents in the rough phase are in Table I. The large value of the

exponents in d = 1, d = 2 are due to the one-loop approximation and the fact the the noise vertex

is relevant for d < 4. The one-loop computation is perturbatively controlled only close to d = 4.

The rough/turbulent phase is self-organized critical in the sense that it is does not require

fine-tuning of the coupling constants to reach it. Rather, the same fixed point is reached for all

�̃⇤0 > �̃⇤0,c as can be seen from flows of the mass parameter in Fig. 3. Note that the initial value

6

▪  KPZ with Galilean invariance, exact exponent identity 
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▪  d=2, 3, fine tuned flows at roughening 
transition 

▪  Approaching the rough phase, FDT is 
violated 

Strack, arXiv:1408.1405 

▪  In d=1, interface always rough 

▪  KPZ with Galilean invariance 
(Nattermann, PRA 1992; Frey, Täuber, 
PRB 1994): 
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Kinetic surface roughening. I. The Kardar-Parisi-Zhang equation
in the weak-coupling regime

Thomas Nattermann' and Lei-Han Tang'
Institut fiir Festkorperforschung des Forschungszentrums Julich, Postfach 1913, D 517-0 Julich, Germany

and Fakultat fiir Physik und Astronomic, Ituhr II'-oersitat Bochum, Postfach 1021/8, D $63-0 Bochurn, Germany
(Received 28 August 1991)

The Kardar-Parisi-Zhang equation for surface growth is analyzed in the regime where the nonlinear
coupling constant is small. We present detailed calculations for the mean-square surface width in
terms of the bare parameters of the equation. For surface dimension d & 2, this quantity is shown to
obey crossover scaling. The case d = 2 is marked by an exponentially slow crossover associated with
the marginally unstable character of the linear theory. For d & 2 a renormalization-group analysis in
the one-loop approximation yields a logarithmic scaling form at the roughening transition between
smooth and rough growth phases. The crossover behavior on either side of this transition is discussed.
PACS number(s): 05.40.+j, 64.60.Ht, 68.55.-a, 68.10.3y

I. INTRODUCTION
Snowflakes are familiar examples of various fascinat-

ing patterns exhibited by a growing cluster [1,2]. There
exists, however, another class of processes in nature for
which a macroscopically planar growth front becomes
stable. The problem of kinetic roughening is concerned
with fluctuations around this average plane induced by
stochastic growth rules on the microscopic level [3]. Re-
cent numerical studies have shown that such fluctuations
generically obey dynamic scaling at large distances and
long times. In particular, starting from a flat substrate
of linear size L at time t = 0, the mean-square width of
the surface satisfies [4]

ro (L, t) L ~F(t/L'),
where ( and z are known as roughness and dynamic expo-
nents, respectively. For t && L' the I dependence drops
out, and (1.1) yields to (L, t) t ~ with P = (/z.
From an experimental point of view one is often (and

perhaps more) interested in the actual degree of surface
roughness at a given stage of the growth process. This
requires the knowledge of the values of the exponents as
well as the amplitude of the scaling function F. In ad-
dition, one would like to know on what length and time
scales (1.1) is expected to apply, and how such scales
are estimated from experimentally controllable or mea-
surable parameters such as the deposition rate. In this
paper we address these questions within the framework
of a continuum equation proposed by Kardar, Parisi, and
Zhang (I&PZ) [5]. In terms of the coarse-grained surface
height h(x, t) as a function of t and substrate coordinates
~, the equation takes the form,

(rl(x, t)rl(x', t')) = 2Db"(x —x')b(t —t'), (1.3)
where d is the surface dimension. Here and elsewhere
( ) denotes average over the noise distribution. Though
not written explicitly, it is important to realize that Eq.
(1.2) is meant to apply only above a certain minimal
length scale a. Fluctuations on smaller length scales are
set to zero. It is now well established that (1.2) is a gen-
eral description of stable local growth processes except
when special symmetries or conservation laws are present
[3, 6, 7]. However, a complete analytical treatment of the
equation is still lacking.
Our calculation is based on a one-loop dynamic

renormalization-group (RG) analysis, first carried out by
Forster, Nelson, and Stephen [g] on the related Burgers
equation. In this approach, the nonlinear term in (1.2) is
treated as a perturbation to the linear equation at A = 0,
which can be solved. The phase diagram from the one-
loop calculation is depicted in Fig. 1, which is symmetric
about the horizontal axis. From the figure we see the ex-
istence of a smooth phase encompassing A = 0 for d ) 2,
but only a line separating two phases of identical scaling
behavior for d & 2. The transitions are continuous as
they correspond to unstable fixed points of the RG flow.
Here we analyze the one-loop RG flow equations for the

KPZ equation in more detail particularly around the A =

rough phase

Oh

l9t
= Fp+ v'7 h+ —(7'h) + rl(x, t),2 (1 2)

where Fo represents an average driving force. For our
purpose the noise g is assumed to be Gaussian distributed
with the correlator

FIG. 1. Schematic phase diagram of the KPZ equation
from the one-loop RG analysis. Transitions are marked by
thick lines.

7156 Qc1992 The American Physical Society
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19  Strack, arXiv:1408.1405 

▪  Rough phase: explicit cancellation in flow 
equations à la QED: 
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KPZ-Lieb-Liniger duality beyond integrability/different symmetries? 

20  

Interaction quench in a Lieb-Liniger model and the

KPZ equation with flat initial conditions

Pasquale Calabrese

Dipartimento di Fisica dell Università di Pisa and INFN, 56127 Pisa Italy

Pierre Le Doussal

CNRS-Laboratoire de Physique Théorique de l’Ecole Normale Supérieure
24 rue Lhomond, 75231 Paris Cedex-France

Abstract. Recent exact solutions of the 1D Kardar-Parisi-Zhang equation make
use of the 1D integrable Lieb-Liniger model of interacting bosons. For flat initial
conditions, it requires the knowledge of the overlap between the uniform state and
arbitrary exact Bethe eigenstates. The same quantity is also central in the study
of the quantum quench from a 1D non-interacting Bose-Einstein condensate upon
turning interactions. We compare recent advances in both domains, i.e. our previous
exact solution, and a new conjecture by De Nardis et al.. This leads to new exact
results and conjectures for both the quantum quench and the KPZ problem.
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Summary 

21  

▪  Imbalanced Fermi gases in 2d 
▪ Breakdown of homogeneous superfluidity 
▪ Effective potential flow with fermionic 

mean-field as initial condition 
▪ Potential quantum criticality toward Sarma-

Liu-Wilczek phase 
▪ Outlook on Larkin-Ovchinikov transitions 
 
▪ KPZ interfaces dual to attractive Lieb-

Liniger bosons in 1d 
▪ Break Galilean invariance/integrability 
▪ 1-loop flow with frequency cutoff 

technique 
▪ Hyperthermal, self-organized phase 
▪ Outlook on equilibration after quench 
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Strack and Jakubczyk, PRX (2014); Strack, arXiv:1408.1405 

Further info: http://users.physics.harvard.edu/~pstrack/ 


