Anomalous scaling at non-thermal fixed points of Gross-Pitaevskii and KPZ turbulence

Thomas Gasenzer Steven Mathey Jan M. Pawlowski

ITP - Heidelberg
24 September 2014

Non-thermal fixed points

Non-thermal fixed point are far from equilibrium quasi stationary states of matter.

$$
\text { Scale invariance } \epsilon(k) \sim k^{-d+\eta}
$$

Depending on the initial conditions, the system may take an algebraically long time on the way to thermalisation.

Plan

Ultra-cold Bose gases, Gross-Pitaevskii Equation (GPE)

Interface dynamics, Kardar-Parisi-Zhang (KPZ)

"Burn paper" by CrazzHky, used under CC BY / Cropped, http://crazzhky.deviantart.com/art/Burn-paper-288100073; NIST/JILA/CU-Boulder; Nowak et al., arXiv:1206.3181v2

Driven-Dissipative GPE

Classical field equation for the average Bose wave-function $\phi(\mathbf{x}, t)$:

$$
\mathrm{i} \partial_{t} \phi(\mathbf{x}, t)=\left[-\left(\frac{1}{2 m} \quad\right) \nabla^{2}+\mu+g|\phi(\mathbf{x}, t)|^{2}\right] \phi(\mathbf{x}, t)
$$

Driven-Dissipative GPE

Classical field equation for the average Bose wave-function $\phi(\mathbf{x}, t)$:

$$
\mathrm{i} \partial_{t} \phi(\mathbf{x}, t)=\left[-\left(\frac{1}{2 m}-i \nu\right) \nabla^{2}+\mu+g|\phi(\mathbf{x}, t)|^{2}\right] \phi(\mathbf{x}, t)+\zeta(\mathbf{x}, t)
$$

With complex parameters

$$
\begin{array}{ll}
\mu=\mu_{1}+i \mu_{2} & g=g_{1}-i g_{2} \\
\text { Single particle pump } & 2 \text { particle losses }
\end{array}
$$

and stochastic driving

$$
\langle\zeta(\mathbf{x}, t)\rangle=0 \quad\left\langle\zeta(\mathbf{x}, t) \zeta\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=\gamma \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Driven-Dissipative GPE

Classical field equation for the average Bose wave-function $\phi(\mathbf{x}, t)$:

$$
\mathrm{i} \partial_{t} \phi(\mathbf{x}, t)=\left[-\left(\frac{1}{2 m}-i \nu\right) \nabla^{2}+\mu+g|\phi(\mathbf{x}, t)|^{2}\right] \phi(\mathbf{x}, t)+\zeta(\mathbf{x}, t)
$$

With complex parameters

$$
\begin{array}{ll}
\mu=\mu_{1}+i \mu_{2} & g=g_{1}-i g_{2} \\
\text { Single particle pump } & 2 \text { particle losses }
\end{array}
$$

and stochastic driving

$$
\langle\zeta(\mathbf{x}, t)\rangle=0 \quad\left\langle\zeta(\mathbf{x}, t) \zeta\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=\gamma \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Sieberer et al., PRL 110, 195301 (2013); Sieberer et al., Phys. Rev. B 89, 134310 (2014); Täuber et al., Phys. Rev. X, 0210104 (2014)

Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

$$
\left.\epsilon_{\text {kin }}=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle=\int_{\mathbf{k}} \epsilon(k)
$$

Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

$$
\left.\epsilon_{\text {kin }}=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle=\int_{\mathbf{k}} \epsilon(k)
$$

Scaling from dimensional analysis with an anomalous correction

$$
\epsilon(k) \cong \epsilon_{\mathrm{kin}} k^{-d}(k \xi)^{\eta}
$$

Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

$$
\left.\epsilon_{\text {kin }}=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle=\int_{\mathbf{k}} \epsilon(k)
$$

Scaling from dimensional analysis with an anomalous correction

$$
\epsilon(k) \cong \epsilon_{\mathrm{kin}} k^{-d}(k \xi)^{\eta}
$$

Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

$$
\left.\epsilon_{\text {kin }}=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle=\int_{\mathbf{k}} \epsilon(k)
$$

Scaling from dimensional analysis with an anomalous correction

$$
\epsilon(k) \sim k^{-d+\eta}
$$

d	1	2	3
$\eta_{\text {num }}$	1	small	small

Nowak et al., Phys. Rev. B 84, 020506(R) (2011)

Kardar-Parisi-Zhang equation

A model for interface growth,

$$
\partial_{t} \theta(\mathbf{x}, t)=\nu \nabla^{2} \theta(\mathbf{x}, t)+\frac{\lambda}{2}[\nabla \theta(\mathbf{x}, t)]^{2}+\eta(\mathbf{x}, t)
$$

with diffusion, perpendicular expansion and stochastic driving,

$$
\langle\eta(\mathbf{x}, t)\rangle=0 \quad\left\langle\eta(\mathbf{x}, t) \eta\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=D \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Kardar-Parisi-Zhang equation

A model for interface growth,

$$
\partial_{t} \theta(\mathbf{x}, t)=\nu \nabla^{2} \theta(\mathbf{x}, t)+\frac{\lambda}{2}[\nabla \theta(\mathbf{x}, t)]^{2}+\eta(\mathbf{x}, t)
$$

with diffusion, perpendicular expansion and stochastic driving,

$$
\langle\eta(\mathbf{x}, t)\rangle=0 \quad\left\langle\eta(\mathbf{x}, t) \eta\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=D \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Kardar-Parisi-Zhang equation

A model for interface growth,

$$
\partial_{t} \theta(\mathbf{x}, t)=\nu \nabla^{2} \theta(\mathbf{x}, t)+\frac{\lambda}{2}[\nabla \theta(\mathbf{x}, t)]^{2}+\eta(\mathbf{x}, t)
$$

with diffusion, perpendicular expansion and stochastic driving,

$$
\langle\eta(\mathbf{x}, t)\rangle=0 \quad\left\langle\eta(\mathbf{x}, t) \eta\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=D \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Kardar-Parisi-Zhang equation

A model for interface growth,

$$
\partial_{t} \theta(\mathbf{x}, t)=\nu \nabla^{2} \theta(\mathbf{x}, t)+\frac{\lambda}{2}[\nabla \theta(\mathbf{x}, t)]^{2}+\eta(\mathbf{x}, t)
$$

with diffusion, perpendicular expansion and stochastic driving,

$$
\langle\eta(\mathbf{x}, t)\rangle=0 \quad\left\langle\eta(\mathbf{x}, t) \eta\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right\rangle=D \delta\left(t-t^{\prime}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Scaling in interface growth

The stationary state has scaling correlation functions,

$$
\langle\theta(t+\tau, \mathbf{x}+\mathbf{r}) \theta(t, \mathbf{x})\rangle_{c}=r^{2 \chi} g\left(\tau / r^{z}\right)
$$

with exponents given by:

d	1	2	3	4
χ	$1 / 2$	0.379	0.300	$?$
$z=2-\chi$	$3 / 2$	1.6210	1.700	$?$

Kloss et al., Phys. Rev. E 86, 051124 (2012) and references therein

From DDGPE to KPZ

Density and phase decomposition $\phi(\mathbf{x}, t)=\sqrt{n(\mathbf{x}, t)} \mathrm{e}^{-i \theta(\mathbf{x}, t)}$

$$
\begin{aligned}
& \partial_{t} \theta-\frac{1}{2 m}(\nabla \theta)^{2}-\nu \nabla^{2} \theta \\
& =U \\
& \partial_{t} n-\frac{1}{m} \nabla \cdot(n \nabla \theta)=S
\end{aligned}
$$

with sources of phase and density fluctuations,

$$
\begin{aligned}
& U=U[\theta, n]+\frac{\operatorname{Re}\left(\zeta \mathrm{e}^{i \theta}\right)}{\sqrt{n}} \\
& S=S[\theta, n]+2 \sqrt{n} \operatorname{Im}\left(\zeta \mathrm{e}^{i \theta}\right)
\end{aligned}
$$

From DDGPE to KPZ

Density and phase decomposition $\phi(\mathbf{x}, t)=\sqrt{n(\mathbf{x}, t)} \mathrm{e}^{-i \theta(\mathbf{x}, t)}$

$$
\begin{aligned}
& \partial_{t} \theta-\frac{1}{2 m}(\nabla \theta)^{2}-\nu \nabla^{2} \theta \\
& =U, \quad K P Z \text { equation } \\
& \partial_{t} n-\frac{1}{m} \nabla \cdot(n \nabla \theta) \quad=S
\end{aligned}
$$

with sources of phase and density fluctuations,

$$
\begin{aligned}
& U=U[\theta, n]+\frac{\operatorname{Re}\left(\zeta \mathrm{e}^{i \theta}\right)}{\sqrt{n}} \\
& S=S[\theta, n]+2 \sqrt{n} \operatorname{Im}\left(\zeta \mathrm{e}^{i \theta}\right)
\end{aligned}
$$

Comparing scaling exponents

$$
\begin{aligned}
\epsilon_{\text {kin }} & \left.=\left.\frac{1}{2 m}\langle | \nabla \phi\right|^{2}\right\rangle & & \epsilon_{\text {kin }}(k) \sim k^{-d+\eta} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\text {kin }}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi
$$

Comparing scaling exponents

$$
\begin{aligned}
\epsilon_{\mathrm{kin}} & \left.=\left.\frac{1}{2 m}\langle | \nabla \phi\right|^{2}\right\rangle & & \epsilon_{\mathrm{kin}}(k) \sim k^{-d+\eta} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\mathrm{kin}}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi
$$

GPE simulations

d	1	2	3
$\eta_{\text {num }}$	1	small	small

KPZ literature

d	1	2	3
η	1	1.242	1.400

Comparing scaling exponents

$$
\begin{aligned}
\epsilon_{\mathrm{kin}} & \left.=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle & & \epsilon_{\text {kin }}(k) \sim k^{-d+\eta} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\text {kin }}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi
$$

$$
d=2
$$

$$
\epsilon(k)=k^{2} n(k)
$$

$$
\nu=\mu_{2}=0
$$

$$
g_{2}=\zeta=0
$$

Comparing scaling exponents

$$
\begin{aligned}
\epsilon_{\mathrm{kin}} & \left.=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle & & \epsilon_{\text {kin }}(k) \sim k^{-d+\eta} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\text {kin }}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi
$$

$$
d=2
$$

$$
d=3
$$

Nowak et al. Phys. Rev. B 84, 020506(R) (2011)

Compressible excitations

$$
\begin{aligned}
\epsilon_{\mathrm{c}} & \left.=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle & & \epsilon_{\mathrm{c}}(k) \sim k^{-d+\eta+1} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\mathrm{c}}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi-1
$$

GPE simulations

d	1	2	3
$\eta_{\text {num }}$	0	small	small

KPZ literature

d	1	2	3
η	0	0.242	0.400

Compressible excitations

$$
\begin{aligned}
\epsilon_{\mathrm{c}} & \left.=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle & & \epsilon_{\mathrm{c}}(k) \sim k^{-d+\eta+1} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\mathrm{c}}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi-1
$$

Nowak et al. Phys. Rev. A 85, 043627 (2012)

Compressible excitations

$$
\begin{aligned}
\epsilon_{\mathrm{c}} & \left.=\left.\frac{1}{2 m}\langle | \boldsymbol{\nabla} \phi\right|^{2}\right\rangle & & \epsilon_{\mathrm{c}}(k) \sim k^{-d+\eta+1} \\
& \left.=\left.\frac{n}{2 m} \int_{\mathbf{k}} k^{2}\langle | \theta(\mathbf{k}, t)\right|^{2}\right\rangle & & \epsilon_{\mathrm{c}}(k) \sim k^{z-d-\chi}
\end{aligned}
$$

$$
\rightarrow \eta=z-\chi-1
$$

$$
d=2
$$

$$
d=3
$$

Nowak et al. Phys. Rev. A 85, 043627 (2012)

Conclusions

- Interface dynamics described by KPZ equation does not capture vortex dynamics.
- It does captures the rest.
- We have made an estimation of anomalous scaling exponents of the ultra-cold Bose gas at a non-thermal fixed point.

Gasenzer, SM, Pawlowski, arXiv:1405.7652 [cond-mat.quant-gas]

