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Non-thermal fixed points

Non-thermal fixed point are far from equilibrium quasi stationary
states of matter.

X Scale invariance ε(k) ∼ k−d+η

Depending on the initial conditions, the system may take an
algebraically long time on the way to thermalisation.
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FIG. 5: Vortex tangle structures emerging in the gas for the
two different extremes of initial conditions, α = 2.5, at time
t = 2424 τ (left) and α = 10, at time t = 606 τ (right).

the phase coherence building up in the gas, eventually
leading to a fully coherent BEC on a low-temperature
background, allows to get a complementary understand-
ing of the approach to and departure from the NTFP.
In Fig. 6, we show the evolution of the system, again
starting from the different initial quenches labelled by α,
in a reduced phase space defined by two different char-
acteristic length scales, in units of the healing length ξ:
The coherence length lC is a measure for the mean spa-
tial fall-off of phase coherence in space. We define it as
the integral over the angle-averaged first-order coherence
function g(1)(r) [28]. The correlation length lD measures
the mean decay of vorticity in the proximity of the vortex
line defects in the system [28]. For an isolated circular
vortex ring, lD is proportional to the diameter of the ring
and thus has a similar relevance as the mean distance be-
tween vortices and anti-vortices in a 2D superfluid. The
trajectories of the quench-cooled Bose gas in the (lD, lC)-
plane clearly exhibit the NTFP. Lying in the lower left
corner, it corresponds to a strongly coherent gas with
a maximum mutual separation and minimum bending of
the vortex filaments. The NTFP corresponds ideally to a
single vortex ring of maximum extent within the volume
which is known to be a metastable configuration decay-
ing only slowly via bending and sound generation [22].
The marked time steps show the critical slowing down of
the system approaching the NTFP, while colliding vor-
tex rings are seen to reconnect and form larger rings.
After a long period in the vicinity of the fixed point the
system eventually departs towards final thermal equilib-
rium. This process corresponds to the shrinking of the
last remaining vortex ring, by transferring energy to the
incoherent sound excitations and particles to the conden-
sate mode. The NTFP sits at the crossroads of attractive
and repulsive directions in our reduced phase space.

Summary. The process of Bose-Einstein condensation
in a quench-cooled, dilute cold gas can show features of
universal dynamics. Provided a sufficiently strong cool-
ing quench the condensing system passes by a partially
attractive non-thermal fixed point where it is critically
slowed down. The approach of the fixed point is marked
by the appearance of incompressible flow around tangled
vortex lines. In this regime, particles can not be de-
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FIG. 6: (Color online) Trajectories of vortex states in the
space of inverse coherence length 1/lC and inverse vortex-
correlation length 1/lD for five different initial conditions. Ar-
rows are added to indicate the time direction. The symbols
are equally spaced on a logarithmic time scale except the step
after t0. Times t0 = 0, t1 ≈ 270 τ , t2 ≈ 770 τ and t3 ≈ 6800 τ
are marked for α = 2.5, 10, where τ = mξ2.

posited quickly enough into the zero mode and form an
excess population with a characteristic power-law fall-off
within the low-energy modes. In contrast, slow, near-
adiabatic condensation can exhibit the appearance of vor-
tical motion which is, however, distorted by strong com-
pressible sound excitations. The critical slowing down of
the phase coherence length and vortex distance provide
smoking guns for the detection of the universal dynamics
in experiment. A complete characterization of NTFP in
terms of a full set of critical exponents and thus univer-
sality classes, including anomalous dimensions, is most
desirable, expanding the theory of critical phenomena far
away from equilibrium. Understanding the possible dif-
ferent paths to a BEC is of fundamental interest way be-
yond the realm of ultracold gases, from the phenomenol-
ogy of the solid state up to the highest energies, e.g.,
in heavy-ion collisions [32–36] or early-universe evolution
[2, 26, 32, 37, 38].
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Driven-Dissipative GPE

Classical field equation for the average Bose wave-function φ(x, t):

i∂tφ(x, t) =

[
−
(

1

2m
− iν

)
∇2 + µ+ g |φ(x, t)|2

]
φ(x, t) + ζ(x, t)

With complex parameters

µ = µ1 + iµ2 g = g1 − ig2

Single particle pump 2 particle losses

and stochastic driving

〈ζ(x, t)〉 = 0 〈ζ(x, t)ζ(x′, t ′)〉 = γ δ(t − t ′)δ(x− x′)

Sieberer et al., PRL 110, 195301 (2013); Sieberer et al., Phys. Rev. B 89, 134310 (2014);
Täuber et al., Phys. Rev. X, 021010 4 (2014)
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Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

εkin =
1

2m
〈|∇φ|2〉 =

∫

k
ε(k)

Scaling from dimensional analysis with an anomalous correction

ε(k) ∼= εkink
−d(kξ)η

d 1 2 3

ηnum 1 small small

Nowak et al., Phys. Rev. B 84, 020506(R) (2011)
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Scaling in ultra-cold Bose gases

We focus on the kinetic energy density,

εkin =
1

2m
〈|∇φ|2〉 =

∫

k
ε(k)

Scaling from dimensional analysis with an anomalous correction

ε(k) ∼ εkink−d+η kξ

d 1 2 3

ηnum 1 small small

Nowak et al., Phys. Rev. B 84, 020506(R) (2011)
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Kardar–Parisi–Zhang equation

A model for interface growth,

∂tθ(x, t) = ν∇2θ(x, t) + λ
2 [∇θ(x, t)]2 + η(x, t)

with diffusion, perpendicular expansion and stochastic driving,

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t ′)〉 = D δ(t − t ′)δ(x− x′)

x

θ(
x,

t)



Introduction GPE KPZ DDGPE to KPZ Conclusions

Kardar–Parisi–Zhang equation

A model for interface growth,

∂tθ(x, t) = ν∇2θ(x, t) + λ
2 [∇θ(x, t)]2 + η(x, t)

with diffusion, perpendicular expansion and stochastic driving,

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t ′)〉 = D δ(t − t ′)δ(x− x′)

x

θ(
x,

t)



Introduction GPE KPZ DDGPE to KPZ Conclusions

Kardar–Parisi–Zhang equation

A model for interface growth,

∂tθ(x, t) = ν∇2θ(x, t) + λ
2 [∇θ(x, t)]2 + η(x, t)

with diffusion, perpendicular expansion and stochastic driving,

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t ′)〉 = D δ(t − t ′)δ(x− x′)

x

θ(
x,

t)



Introduction GPE KPZ DDGPE to KPZ Conclusions

Kardar–Parisi–Zhang equation

A model for interface growth,

∂tθ(x, t) = ν∇2θ(x, t) + λ
2 [∇θ(x, t)]2 + η(x, t)

with diffusion, perpendicular expansion and stochastic driving,

〈η(x, t)〉 = 0 〈η(x, t)η(x′, t ′)〉 = D δ(t − t ′)δ(x− x′)

x

θ(
x,

t)



Introduction GPE KPZ DDGPE to KPZ Conclusions

Scaling in interface growth

The stationary state has scaling correlation functions,

〈θ(t + τ, x + r)θ(t, x)〉c = r2χg (τ/r z)

with exponents given by:

d 1 2 3 4

χ 1/2 0.379 0.300 ?

z = 2− χ 3/2 1.6210 1.700 ?

Kloss et al., Phys. Rev. E 86, 051124 (2012) and references therein
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From DDGPE to KPZ

Density and phase decomposition φ(x, t) =
√

n(x, t) e−iθ(x,t)

∂tθ −
1

2m
(∇θ)2 − ν∇2θ = U,

∂tn −
1

m
∇ · (n∇θ) = S ,

with sources of phase and density fluctuations,

U = U[θ, n] +
Re(ζeiθ)√

n

S = S [θ, n] + 2
√
n Im(ζeiθ).

Altman et al., arXiv:1311.0876v2 [cond-mat.stat-mech]
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Comparing scaling exponents

εkin = 1
2m 〈|∇φ|2〉 εkin(k) ∼ k−d+η

= n
2m

∫
k k

2〈|θ(k, t)|2〉 εkin(k) ∼ kz−d−χ
→ η = z − χ

GPE simulations KPZ literature

X
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= n
2m

∫
k k

2〈|θ(k, t)|2〉 εkin(k) ∼ kz−d−χ
→ η = z − χ

GPE simulations KPZ literature

d 1 2 3

ηnum 1 small small
X

d 1 2 3

η 1 1.242 1.400

Nowak et al., Phys. Rev. B 84,
020506(R) (2011)
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FIG. 2: Snapshots of a single run of the evolution in d = 3
dimensions. The points show where the density falls below
5% of the mean density n. Parameters are: g = 8 · 10−4 ,
N = 109, Ns = 128. 1. t = 0 (top left) 2. t = 103 (top right)
3. t = 410 (bottom left) 4. t = 1640 (bottom right)

system depicted in Fig. 1, on a double-logarithmic scale.
(dΩd denotes the angular differential.) During the ini-
tial evolution the mode occupations gradually spread to
larger wave numbers. As soon as vortex-antivortex pairs
appear, a power-law regime n(k) = k−ζ is observed. Dur-
ing the final stage of the vortex-bearing phase two dis-
tinct power laws develop which are found to be in excel-
lent agreement with the analytical prediction of Ref. [6].
While in the ultraviolet the exponent ζUV = d = 2 ex-
hibits weak wave turbulence, in the infrared the exponent
confirms the result ζ = d + 2 = 4, see Eq. (2), corrobo-
rating results for a relativistic model in [4]. Note that in
d = 2, the weak-turbulence exponent ζUV = 2 is identi-
cal to that in thermal equilibrium in the Rayleigh-Jeans
regime, n(k) ∼ T/ω ∼ T/k2 [25]. The momentum dis-
tributions during this final phase are shown again, for
d = 2 and d = 3, in Figs. 4 and 5 (filled black cir-
cles), respectively, confirming the analytical prediction
of Eq. (2) also for d = 3. The scaling n(k) ∼ k−2 in
the ultraviolet reflects that the corresponding modes are
already thermalised. We remark that, for weaker inter-
action strengths, the weak-wave-turbulence scaling with
ζUV = d = 3 is also seen, at intermediate times.
To understand these findings in the context of QT

we analyse kinetic-energy spectra as in [13]. The to-
tal kinetic energy Ekin =

∫
ddx 〈|∇ψ(x, t)|2〉/2 can be

split, Ekin = Ev + Eq, into a ‘classical’ part Ev =∫
ddx 〈|√nv|2〉/2 and a ‘quantum-pressure’ component

Eq =
∫
ddx 〈|∇√

n|2〉/2. The radial energy spectra for
these fractions involve the Fourier transform of the gen-
eralised velocities wv =

√
nv and wq = ∇√

n,

Eδ(k) =
1

2

∫
kd−1dΩd 〈|wδ(k)|2〉, δ = v, q. (4)

Note that the superfluid velocity v = ∇φ of a single
vortex diverges as 1/r with the distance r from the vortex

FIG. 3: Single-particle mode occupation numbers as func-
tions of the radial momentum k = [

∑d
i=1 4sin

2(ki/2)]
1/2,k =

2πn/Ns, n = (n1, ..., nd), ni = −Ns/2, ..., Ns/2, for the four
different times of the run in d = 2 dimensions shown in Fig. 1.
Note the double-logarithmic scale. An early development of
a scaling n(k) ∼ k−4 is followed by a bimodal scaling with
n(k) ∼ k−2 at larger wave numbers.

1

102

104

106

0.03 0.1 0.3 1

O
cc
u
p
at
io
n
n
u
m
b
er

n
(k
)

Radial momentum k
kξ

initial
occupation

n(k)

nq(k)

nc(k)

ni(k)

k−4

k−3

k−4.66

FIG. 4: Single-particle occupation numbers of different frac-
tions of the system, at time t = 105 of the d = 2 run shown in
Fig. 3. The black points are the same as those shown in the
lower right panel of Fig. 3. Colors distinguish the fractions
ni (red circles), i.e., the divergence-free part of the flow field
wv =

√
nv, nc (filled blue squares), i.e., the solenoidal part

of wv, and the quantum-pressure partnq (open grey squares).
A scaling with k−4.66 corresponds to a 5/3 law for the kinetic
energy in d = 2. kξ = 2π/ξ marks the scale corresponding to
the healing length ξ = 1/

√
2mgn

core. Hence, the Fourier transform of v is ill-defined
and requires regularisation of |v(x)| in the vicinity of the
core. In wv, this is naturally achieved by the factor

√
n

which rises linearly in r for small r. Following Ref. [13]
the regularised velocity wv is furthermore decomposed
into ‘incompressible’ (divergence free) and ‘compressible’
(solenoidal) parts, wv = wi +wc, with ∇ ·wi = 0, ∇×
wc = 0, to distinguish vortical superfluid and rotationless

d = 2
ε(k) = k2n(k)

ν = µ2 = 0
g2 = ζ = 0

Nowak et al., Phys. Rev. B 84,
020506(R) (2011)
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FIG. 5: Same as in Fig. 4, for the run in d = 3 dimensions
shown in Fig. 2, at the time t = 1640 of the situation in its
lower right panel. A scaling with k−5.66 corresponds to a 5/3
law for the kinetic energy in d = 3.

motion of the fluid.
For comparison of the kinetic-energy spectrum with

the single-particle spectra n(k), we determine occupation
numbers corresponding to the different energy fractions
as nδ(k) = k−d−1Eδ(k), δ ∈ {i, c, q}. In the cases we con-
sider, the resulting spectra ni(k), nc(k), and nq(k) add
up to the single-particle spectrum n(k) discussed before.
The components and their sum are shown seperately, for
d = 2 and d = 3, in Figs. 4 and 5, respectively. Red cir-
cles denote ni, filled blue squares show the dependence
of nc, and open grey squares that of nq. Qualitatively,
the results are the same for d = 2 and d = 3. Excita-
tions with large wave numbers are thermally distributed.
In this regime, the spectrum n(k) ∼ k−2 is dominated
by the compressible and quantum-pressure components.
For smaller wave numbers the scaling changes to n(k) ∼
k−d−2, being dominated by the velocity wv. Moreover,
we find that it is this decomposition into ni and nc which,
for intermediate wave numbers, allows the incompressible
part of the energy to develop a Kolmogorov-like scaling
∼ k−5/3−d−1 above the scale kl ∼ 2π/l determined by the
mean distance l between vortex cores. While the scaling
of the sum of these components is predicted by the field-
theoretic analysis in Ref. [6], a rising compressible part
allows the incompressible contribution to deviate from
the IR power law and to develop the observed scaling.
Towards the IR limit, the compressible part becomes too

weak such that the scaling of ni goes over to ζ = d+ 2.

One can show that the analytically predicted infrared
power law n(k) ∼ k−4 in d = 2 is consistent with a finite
density of independent vortices and antivortices. The IR
scaling ∼ k−d−1 of the compressible (blue) component
suggests an interpretation in terms of acoustic turbulence
[20, 22, 25]. Our results show that this component sur-
vives for a limited period beyond the time when all vorti-
cal excitations have mutually annihilated. The observed
scaling corroborates the numerical findings of Ref. [27],
whereby we refrain from sharing the interpretation of the
power law.

In summary, our results show a distinct power-law be-
haviour k−ζ of the single-particle momentum spectrum
n(k) as well as of different components of the kinetic-
energy distribution over the radial wave number k. Scal-
ing exponents ζ of n(k) corroborate the analytical predic-
tions of Ref. [6]. Our findings suggest that local field ex-
pectation values and short- to intermediate-range coher-
ence, including topological excitations, are at the basis of
the infrared power laws predicted within nonperturbative
dynamical field theory [4–6, 8]. For the chosen generic
initial conditions, excitations on the top of this classical
field background support an interpretation in terms of
acoustic wave turbulence. The connection of these phe-
nomena with ab-initio dynamical field theoretic methods
points a way to unified analytical studies of turbulence.
Moreover, it provides hints of how the proposed dynami-
cal critical phenomena in relativistic systems [4, 5, 8] can
be realized in nature.

Experimental studies of universal phenomena in
nonequilibrium dynamics of ultracold atoms have great
potential since universal effects do not depend signifi-
cantly on initial conditions and details of the system.
The study of turbulence in ultracold gases may have great
impact on many other fields of physics. Prominent ex-
amples are strongly correlated nuclear matter produced
in heavy-ion collisions and early-universe cosmology.
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√
nv and wq = ∇√

n,

Eδ(k) =
1

2

∫
kd−1dΩd 〈|wδ(k)|2〉, δ = v, q. (4)

Note that the superfluid velocity v = ∇φ of a single
vortex diverges as 1/r with the distance r from the vortex

FIG. 3: Single-particle mode occupation numbers as func-
tions of the radial momentum k = [

∑d
i=1 4sin

2(ki/2)]
1/2,k =

2πn/Ns, n = (n1, ..., nd), ni = −Ns/2, ..., Ns/2, for the four
different times of the run in d = 2 dimensions shown in Fig. 1.
Note the double-logarithmic scale. An early development of
a scaling n(k) ∼ k−4 is followed by a bimodal scaling with
n(k) ∼ k−2 at larger wave numbers.
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FIG. 4: Single-particle occupation numbers of different frac-
tions of the system, at time t = 105 of the d = 2 run shown in
Fig. 3. The black points are the same as those shown in the
lower right panel of Fig. 3. Colors distinguish the fractions
ni (red circles), i.e., the divergence-free part of the flow field
wv =

√
nv, nc (filled blue squares), i.e., the solenoidal part

of wv, and the quantum-pressure partnq (open grey squares).
A scaling with k−4.66 corresponds to a 5/3 law for the kinetic
energy in d = 2. kξ = 2π/ξ marks the scale corresponding to
the healing length ξ = 1/

√
2mgn

core. Hence, the Fourier transform of v is ill-defined
and requires regularisation of |v(x)| in the vicinity of the
core. In wv, this is naturally achieved by the factor

√
n

which rises linearly in r for small r. Following Ref. [13]
the regularised velocity wv is furthermore decomposed
into ‘incompressible’ (divergence free) and ‘compressible’
(solenoidal) parts, wv = wi +wc, with ∇ ·wi = 0, ∇×
wc = 0, to distinguish vortical superfluid and rotationless

d = 2 d = 3

Nowak et al., Phys. Rev. B 84,
020506(R) (2011)
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Compressible excitations

εcin = 1
2m 〈|∇φ|2〉 εc(k) ∼ k−d+η+1

= n
2m

∫
k k

2〈|θ(k, t)|2〉 εc(k) ∼ kz−d−χ
→ η = z − χ− 1

GPE simulations KPZ literature

d 1 2 3

ηnum 0 small small
X

d 1 2 3

η 0 0.242 0.400

Nowak et al., Phys. Rev. A 85,
043627 (2012)
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Conclusions

• Interface dynamics described by KPZ equation does not
capture vortex dynamics.

• It does captures the rest.

• We have made an estimation of anomalous scaling
exponents of the ultra-cold Bose gas at a non-thermal fixed
point.

Gasenzer, SM, Pawlowski, arXiv:1405.7652 [cond-mat.quant-gas]
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