Phase structure, Thermodynamics and Fluctuations in QCD

Bernd-Jochen Schaefer

Austria

Helmholtz International Center

Germany

Germany

Sept 22nd 2014

7th International Conference on the **Exact Renormalization Group** 22-26 September 2014 Lefkada, Greece

Agenda

- Phase transitions and QCD
- QCD-like model studies
 - → chiral and deconfinement aspects
- Significance of Fluctuations

Experiments: Heavy-Ion Collision

aim: create hot and dense QCD matter → understanding strongly correlated systems

QCD under extreme conditions: very active field → see e.g. FAIR construction (2014)

Goals of HIC Experiments: learn QCD matter Equation of State

Understanding fundamental phenomena:

- color confinement
- nature of chiral &

deconfinement transition

- early Universe history
- nuclear matter
- properties of stars

3

Experiments: Heavy-Ion Collision

aim: create hot and dense QCD matter → understanding strongly correlated systems

QCD under extreme conditions: very active field → see e.g. FAIR construction (2014)

Goals of HIC Experiments: learn QCD matter Equation of State

Understanding fundamental phenomena:

- color confinement
- nature of chiral &

deconfinement transition

- early Universe history
- nuclear matter
- properties of stars

4

Strongly-interacting matter: non-Abelian SU(3)c gauge theory

IESSEN

QCD at finite temperatures and densities

→ "transitions" partial deconfinement & partial chiral symmetry restoration

For physical quark masses: smooth phase transitions → deconfinement: analytic change of d.o.f.

→ associated global QCD symmetries only exact in two mass limits:

1.) infinite quark masses → center symmetry: Order parameter: VEV of traced Polyakov loop (alternatives: dual observables, e.g. dressed Polyakov loop)

[Gattringer et al. 06/07]

$$\Phi = \langle l(\vec{x}) \rangle = \exp(-\beta F_q) \qquad ; \qquad \bar{\Phi} = \langle l^{\dagger}(\vec{x}) \rangle = \exp(-\beta F_{\bar{q}})$$
Free energy E_x of a static quark (anti-quark) in hot qluonic medium

Free energy Fq Or a Static quark (anti-quark) in not gluonic medium

confined (disordered) phase

- free energy diverges
- Polyakov loop vanishes
- correlations vanishes

deconfined (ordered) phase

- free energy finite
- Polyakov loop non-vanishing
- correlations finite

QCD at finite temperatures and densities

→ "transitions" partial deconfinement & partial chiral symmetry restoration

For physical quark masses: smooth phase transitions → deconfinement: analytic change of d.o.f.
 → associated global QCD symmetries only exact in two mass limits:

- 1.) infinite quark masses \rightarrow center symmetry:
- 2.) massless quarks \rightarrow chiral symmetry:

Order parameter: VEV of traced Polyakov loop

Order parameter: chiral condensate

QCD at finite temperatures and densities

→ "transitions" partial deconfinement & partial chiral symmetry restoration

For physical quark masses: smooth phase transitions \rightarrow deconfinement: analytic change of d.o.f.

→ associated global QCD symmetries only exact in two mass limits:

1.) infinite quark masses → center symmetry:

Order parameter: VEV of traced Polyakov loop

2.) massless quarks \rightarrow chiral symmetry:

Order parameter: chiral condensate

QCD at finite temperatures and densities

→ "transitions" partial deconfinement & partial chiral symmetry restoration

For physical quark masses: smooth phase transitions → deconfinement: analytic change of d.o.f.
 → associated global QCD symmetries only exact in two mass limits:

1.) infinite quark masses → center symmetry:

Order parameter: VEV of traced Polyakov loop

2.) massless quarks \rightarrow chiral symmetry:

Order parameter: chiral condensate

Conjectured QCD phase diagram

QCD lattice simulations: no final answer

courtesy of F. Karsch

→ can one improve the model calculations?

→ remove model ambiguities

Conjectured QC₃D phase diagram

- → can one improve the model calculations?
 - → remove model ambiguities

Theoretical questions: chiral & deconfinement transition

- CEP: existence/location/number
- Quarkyonic phase: coincidence of both transitions at $\mu = 0 \& \mu > 0$?
- relation between chiral & deconfinement? chiral CEP/deconfinement CEP? [Braun, Janot, Herbst 12/14]
- finite volume effects? → lattice comparison
- inhomogeneous phases? → more favored?
- role of fluctuations? so far mostly mean-field results
 effects of fluctuations are important

e.g. size of critical region around CEP

- axial anomaly restoration around chiral transition?
- good experimental signatures?
 - ➔ higher moments more sensitive to criticality deviation from HRG model

11

Conjectured QC₃D phase diagram

- \rightarrow can one improve the model calculations?
 - → remove model ambiguities

Theoretical questions: chiral & deconfinement transition

- CEP: existence/location/number
- Quarkyonic phase: coincidence of both transitions at $\mu = 0 \& \mu > 0$?
- relation between chiral & deconfinement? chiral CEP/deconfinement CEP? [Braun, Janot, Herbst 12/14]
- finite volume effects? → lattice comparison
- inhomogeneous phases? → more favored?
- role of fluctuations? so far mostly mean-field results
 effects of fluctuations are important

e.g. size of critical region around CEP

- axial anomaly restoration around chiral transition?
- good experimental signatures?
 - ➔ higher moments more sensitive to criticality deviation from HRG model

non-perturbative continuum functional methods (DSE, FRG, nPI)

- → complementary to lattice
- \Rightarrow no sign problem μ >0

 \Rightarrow chiral symmetry/fermions/small masses/chiral limit

Conjectured QC₃D phase diagram

Method of choice: Functional Renormalization Group

- e.g. (Polyakov)-quark-meson model truncation
- good description for chiral sector
- implementation of gauge dynamics (deconfinement sector)

Theoretical questions: chiral & deconfinement transition

- CEP: existence/location/number
- Quarkyonic phase: coincidence of both transitions at $\mu = 0 \& \mu > 0$?
- relation between chiral & deconfinement? chiral CEP/deconfinement CEP? [Braun, Janot, Herbst 12/14]
- finite volume effects? → lattice comparison
- inhomogeneous phases? → more favored?
- role of fluctuations? so far mostly mean-field results
 effects of fluctuations are important

e.g. size of critical region around CEP

- axial anomaly restoration around chiral transition?
- good experimental signatures?
 - ➔ higher moments more sensitive to criticality deviation from HRG model

22.09.2014 | B.-J. Schaefer | Giessen University |

Chiral transition

Fluctuations of oder parameter $\rightarrow\infty$ at 2^{nd} order transition

critical fluctuations \rightarrow phase boundary?

JNIVERSITÄT

GIESSEN

Hadron Resonance Gas Model

HRG model: good lattice data description [Andronic et al. 2011] dN/dy √s_{NN}=200 GeV 10² 14.0 ε/Т⁴ [₽]₽₽₽ Ŧ Ŧ 12.0 ¢ 10 <u>¢</u> HRG model: no critical fluctuations 10.0 Φ Data 8.0 STAR 8.0 PHENIX 6.0 10.0 △ BRAHMS (ε-3P)/T⁴ 7.0 10 4.0 Model, x²/N_{at}=29.7/11 $\chi_{\rm B}^{(2)}/\chi_{\rm B}^{(1)}$ T=164 MeV, µ = 30 MeV, V=1950 fm 6.0 2.0 $\pi^+\pi^-\mathsf{K}^+\mathsf{K}^-\mathsf{p}\ \overline{\mathsf{p}}\ \Lambda\ \overline{\Lambda}\ \Xi^-\overline{\Xi}^+\Omega\ \phi\ d\ \overline{d}\ \mathsf{K}^*\Sigma^*\Lambda^*$ 5.0 0.0 4.0 Ŧ 0.5 1.0 $\chi_{\rm B}^{(4)}/\chi_{\rm B}^{(2)}$ 3.0 1.0 2.0 HRG: 3/2 1.0 4/2 2/1 $\chi_{\rm B}^{(3)}/\chi_{\rm B}^{(2)}$ 0.0 STAR: 3/2 0.5 1.0 1.5 4/2 ⊢∎s_{NN}^{1/2} [GeV] 2/1 🛏 0.1 [Karsch, Redlich 2010] 5 10 20 50 100 200

HRG model versus experiment

Agenda

Phase transitions and QCD

- QCD-like model studies
 - → chiral and deconfinement aspects
- Significance of Fluctuations

Vacuum Fluctuations

Partition function:

$$\mathcal{Z} = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi \mathcal{D}\phi e^{-\int d^4x \, \mathcal{L}(\bar{\psi},\psi,\phi)}$$
 replace with (const.) condensate σ

Grand potential in Mean-field approximation

$$\Omega(T,\mu;\sigma) = \Omega_{\rm vac} + \Omega_{\rm T} + V_{\rm MF}(\sigma) \qquad (+\mathcal{U}_{\rm Poly}(\Phi))$$

vacuum term: regularize e.g. with sharp three-momentum cutoff

$$\Omega_{\rm vac}(\Lambda) = -4 \int^{\Lambda} \frac{d^3 p}{(2\pi)^3} \sqrt{\vec{p}^2 + m_q^2}$$

for each cutoff: adjust model parameters like $\,f_{\pi},m_{\sigma},m_{\pi}\,$

standard MFA: $\Lambda=0$

Role of fluctuations in (P)QM models

Fluctuations of higher moments exhibit strong variation from HRG model

[Karsch, Redlich, Friman, Koch et al. 2011]

 $\blacksquare \rightarrow turn negative$

In higher moments: $R_{n,m}^q = c_n/c_m$ c_n: Taylor expansion coefficients of pressure

I regions where $R_{n,2} < 0$ along crossover in the phase diagram

unquenched PQM MFA

QM MFA w/o vacuum

role of vacuum term in (P)QM models see

Role of fluctuations in (P)QM models

Fluctuations of higher moments exhibit strong variation from HRG model

[Karsch, Redlich, Friman, Koch et al. 2011]

 $\blacksquare \rightarrow turn negative$

In higher moments: $R_{n,m}^q = c_n/c_m$ c_n: Taylor expansion coefficients of pressure

I regions where $R_{n,2} < 0$ along crossover in the phase diagram

unquenched PQM MFA renormalized

QM MFA renormalized

role of vacuum term in (P)QM models see: [BJS, Wagner 2011/12]

UNIVERSITÄT

GIESSEN

Functional Renormalization Group

22.09.2014 | B.-J. Schaefer | Giessen University |

21

FRG and QCD

full dynamical QCD FRG flow:

[Braun, Haas, Pawlowski 2009/12]

fluctuations of gluon, ghost, quark and (via hadronization) meson

pure Yang Mills flow + matter back-coupling

FRG: quark-meson truncation

First step: flow for quark-meson model truncation: neglect YM contributions

Phase diagram N_f=2 QM

GIESSEN

Phase diagram N_f=2 QM

_

UNIVERSITÄT

GIESSEN

FRG and QCD

pure Yang Mills flow:

fluctuations of gluon, ghost

FRG and QCD

Polyakov-loop improved quark-meson flow:

[Herbst, Pawlowski, BJS 2007 2013]

fluctuations of Polyakov-loop, quark and meson

$$\partial_t \Gamma_k[\phi] = \longrightarrow \mathcal{U}_{\text{Pol}}(\Phi) \qquad - \bigotimes + \frac{1}{2} \bigotimes$$

Yang-Mills flow replaced by
 → effective Polyakov-loop potential

$$\rightarrow \mathcal{U}_{Pol}(\Phi)$$

fitted to lattice Yang-Mills thermodynamics

FRG: Quark-Meson with Polyakov

[[]Herbst, Pawlowski, BJS 2010,2013]

FRG: Quark-Meson with Polyakov

Pressure and interaction measure in comparison with lattice data (polynomial Polyakov-loop potential)

 $N_{f} = 2$

[Herbst, Mitter, Stiele, Pawlowski, BJS 2014]

FRG: Quark-Meson with Polyakov

$N_{f} = 2+1$

Influence axial anomaly

Critical Endpoint

so far:

we can exclude CEP for small densities

but no baryons!

[C. Fischer, J. Lücker, C. Welzbacher 2014]

N_c=2 : diquark condensation

JNIVERSITÄT

GIESSEN

Outlook: Inhomogeneities

inhomogeneous chiral symmetry breaking:

phases characterized by spatially varying chiral condensate $\sigma(x)$ which breaks translational variance

allowing for inhomogeneous phases \rightarrow cooper pairs with non-vanishing total momentum near Fermi surface only one- and two-dimensional condensates (here, in this context, first work beyond mean-field approximation)

Outlook: Inhomogeneities

QM model: Phase diagram (two flavor, extended MFA)

Influence Dirac sea (left: $\Lambda=0$ middle: $\Lambda=600$ MeV right: $\Lambda=5$ GeV)

[S. Carignano, M. Buballa, BJS 2014]

LP: Lifshitz point (two homogeneous phases meet one inhomogeneous phase)

CP: Critical point (endpoint of 1st order transition)

For $m_{\sigma} = 2M_q$ LP=CP

outlook: full FRG treatment....

Summary & Conclusions

- QCD-like model studies for two and three flavors
- effects of quantum and thermal fluctuations on QCD phase structure
- existence of critical points in phase diagram

functional approaches (e.g. FRG) are suitable and controllable tools to investigate the QCD phase diagram and its boundaries

