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The key points of this talk

e The motivation: Unimodular gravity and the cosmological constant
problem
— Does it really solve it?

e Quantum unimodular gravity and its UV structure under the light of the
ERG

e The (in)equivalence of quantum unimodular gravity with quantum GR
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Unimodular gravity and the cosmological constant problem

e The GR action: A Diff invariant and successful theory of gravity at solar and cosmological (?) scales

R —2A
S= [ d*x/—g——— + Smatter
167G

e Motivation: The cosmological constant problem: Why is the observed value of A so small?

e The idea of unimodular gravity: Disentangle the coupling A from the classical dynamics of gravity 1

8
—/—g=0 ~> V“E“ = 0 (restricted symmetry: TDiff)
08uv

e The classical dynamics of unimodular gravity are exactly the same with GR:

Bianchi identities: R — 8w GTH,, = const. = 4X¢

Field equations: Gy + Nogur = 8mGT
e So what changes then? Absolutely no change in physics!

Classical unimodular gravity = Classical GR

1The first one to introduce unimodular gravity was Einstein himself, but in a different context, A. Einstein, Annalen der Physik, vol.
354, 7697822 (1916)
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Restoring the symmetries in unimodular gravity

e Unimodularity in action: The unimodularity condition can be implemented as an on—shell condition through
a lagrange multiplier A(x)

S:/d4x|:\/ng— A(\/jg7<o):|

167G

o Stiickelberg-ing the action: Introduce four Stiickelberg fields ¢ (x), as if we were performing a general

coordinate transformation, and let x* — ¢ (x) 2
/d4xA (\/—g - 60) - /d“m (\/ﬁg — e \J“ﬂ\) = [ d*x/Zgr (1 — ov)

9™ (x) . }J B8
- 7 h =
™ with

, «a,B=0,...,3

The Stiickelberg Jacobian: |Jaﬂ| =

e A new, generalised and Diff-invariant unimodular formulation of GR

s= [ d*x/"g [16% — M) - (%)

~~ Its easy to see that the equations of motion for the fields A and ) ensure the classical dynamics are the

same as those of GR

2See also K. V. Kuchar PRD43, 333273344 (1991)
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Quantum unimodular gravity: A simple example of equivalence

e Consider the lowest order approximation of the Stiickelberged unimodular action 3

5—/dx Vars

167G

*A(\/jg* \JQB\) )

e Defining the path integral for the theory with only the metric coupled to the sources 4

Z[] = / Dg‘“/D)\DTMEfS[g'T.)\] +iSext[g ]

8nG

R 1
Slg, 7 Al = /d4x |:\/7g — ( e 8‘”—“)] +/ d*xy/— | —— K — nyart
167G boundary

o Integrating out the field 7/ and then the lagrange multiplier A we arrive at the path integral of GR with a
cosmological constant

Zl = / Dgwl,e'écw[s-%o)ArSext[gJ]

- 1
Serlgi o) = [ d*x/— [16 - o]+/b d*xy/—7——K

oundary 8 G

Quantum Unimodular GR = Quantum GR, provided we make the appropriate assumptions

3Reminder: |J% | = 00 (41510685758 gh v gk A ] = 94+
B n v OROX Bl vl s

4This is essentially the action introduced in M. Henneaux and C. Teitelboim, Phys.Lett.  Br222, 195-199 (1989)
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Quantum unimodular gravity within the ERG

We are now interested in understanding the UV structure of the Diff invariant unimodular theory in the
Wilsonian approach of the Exact Renormalisation Group Equation 5

1 _1
_ - (2)
Ol = Tr [(rk +Rk) kakRk] ,

The starting point is the generating functional, where now all fields of the theory are coupled to external

sources
zU] = /ng,Dé” D eSOl [ Ja®a+as; ®a = {guws A 67
R —2A 1 |99%(x)
S[d4] = d*x\/— + A(x)f + s Y= — | ——
ol V| S A1)+ a(w) |75

The metric, lagrange multiplier and Stiickelberg fields fluctuate as

_ A \V Go _
8uv (X) = Buv (x) + V/Gohpw + Tg‘“’h’

A =X+ +/GydA,
6% = 3% + 62254 + GV 54,

The momentum-dependent Hessian entries are

(2) (2) (2) (2) (2)
Tono Thio Toor Toxo The

5C. Wetterich Phys. Lett. B 301, 90 (1993) |T. R. Morris, Int. J. Mod. Phys. A 9 (1994)2411.
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Quantum unimodular gravity within the ERG

o The (Eucledian) Diff-invariant effective action for the unimodular theory °

g A 9] = = [ 4V [Z6(R =20 = A 7(0) = (1) ] + Sypss + Syaue v

e The flow equation shall be solved through a polynomial ansatz in the Stiickelberg sector

N No
fy)=>_ Sov' aw) =3 o’
o * i

e Choosing an S; background and the optimised regulator function 7
Re = (K — (-0))o(k* — (-0))
we can calculate the beta functions for the dimensionless couplings of the theory
Einstein—Hilbert sector: kA = (—2+ 77;\)7\, kO G = 2+ 7]&)@

kdyc
—=1]

[E=c/k? n. =
Stiickelberg sector: kdkpi = (—2 + nﬁi)ﬁ[, koo = (—4+ 775/.)&,'

6Fcr an interesting and conceptually different study of unimodular gravity within the ERG see A. Eichhorn Class.Quant.Grav., vol.
30, p. 115016 (2013)

7D. F. Litim, Phys.Lett., B486, 92-99 (2000)
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Quantum unimodular gravity vs quantum GR
Our criteria of comparison between the two theories: The corresponding fixed points and their associated
eigenvalues

il 3] = = [ @*xV/E [Z6(R =20 = X 7(0) = 4(0) | + Sypamts + Sauge fing

e The GR truncation: f(¢)) =0, q(yp) =0

Fixed points: (A, G) = (0.193, 0.707)
Eigenvalues: (YA, vg) = (—1.99 £ 3.829/)

e The minimal unimodular case: () = pg + p1¥, q(¥») =0

Fixed points: (A, G, g, p1) = (0.252, 0.520, 0, 0)
Eigenvalues: (’y/~\ & Vho> "/51) = (—2.093 + 1.396/, —6.468, —2)

4
et )=

~~ Fixed point and attractive eigen-values of (7\, E;) persist and show good quantitative stability

4
1

e Higher order unimodular sector: (1)) = 5 5
1

i=0

~~ Stiickelberg couplings 5;, &; remain trivial in the UV, while the associated eigenvalues remain negative
as we increase the truncation order

~+ The effective actions for GR and the unimodular theory look similar in the UV

rUmm. GR

~

k/kg>1 k/kg>1
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The full results

Ax

hox |

‘ P1x P2 P3x Pax &ox [ 53x

o o I N I I S B N -
0.252 0.520 0 0 - - - - = -
0.252 0.520 0 0 0 - — _ — _
0.252 0.520 0 0 0 0 — - — -
0.252 0.520 0 0 0 0 0 - - -
0.249 0.528 — - - - _ - 0 -
0.250 0.525 = — — — _ - 0 0
0.249 0.527 — — - - — - 0 0

[ 0252 [ 0520 [ o [ o [ — - ] - Jo [ - ] -

[ 0.25 | 0.520 | o | o -1 = - |o [ o \ -

4 [ e [ 50 [ [ % [ % [ [767 [ 6 [

| —1.475 +3.043 | —1.475 —3.043; | - ] - | — | — | - | — | — —
—2.003 + 1.396 —2.093 — 1.396 —6.468 | —2 —2 — — _ - _
—2.201 + 4.052 —2.201 — 4.052 —6.468 | —2 —2 —0.660 — - — —
—2.201 + 4.052 —2.201 — 4.052 —6.468 | —2 —2 —0.660 | —1.404 — — —
—2.201 + 4.052 —2.201 — 4.052 —6.468 | —2 —2 —0.660 | —1.404 | —1.89 — —
—2.320 4+ 3.946i | —2.320 — 3.946i — — — — — — —2.670 —
—2.301 + 3.964/ —2.320 — 3.964/ — — — — — — —3.040 —3.04(
—2.270 +3.993i | —2.270 — 3.993; — — — — — — —3.409 | —3.40

[ —2.291+4.052i | —2.201 —4.052i | —6.468 | —2 | -] - ] — [ —2.660 ] - ] —

| —2.201+4.052 | —2.201 —4.052 | —6.468 | —2 | — | - — | —2660 | —3.204 | —
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Key results and summary

Unimodular gravity is equivalent to GR at the classical level, and as such does
not shed any new light to the cosmological constant problem

The unimodularity condition can be implemented in a general, Diff-invariant
fashion at the level of the action

Quantum mechaniqallgl equivalence with GR can in principle be established
provided any new fields introduced are not coupled to external sources in the
generating functional

Within the Wilsonian approach of the ERG, the two effective actions appear
similar in the UV, with onlﬁ difference the number of relevant Stiickelberg
couplings increasing with the order of truncation
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