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Three deep questions

IR CFT

UV CFT

μ

In relativistic QFTs:

1 Is there a quantity that can tell us what is UV and what is IR
(a-theorem)?

2 Are theories with scale invariance necessarily conformal?
3 Are there limit cycles in the RG running?

Essential assumption: Unitarity



Motivation

Phases of QFTs
1 IR-free

• With mass gap: Exponentially decaying correlators (e.g.
confinement)

• Without mass gap: Trivial correlators (e.g. Abelian Coulomb
phase)

2 IR-interacting
• CFTs: Power-law correlators (e.g. non-Abelian Coulomb phase)
• Scale-invariant field theories: ?

IR-limits of RG flows

1 Strong coupling (e.g. QCD)

2 Fixed points (CFTs)

3 Limit cycles (?)

4 Ergodic trajectories (?)



a-theorem

Strongest version: Is there a positive definite-tensor Gij in the space
of couplings such that ∂iV = Gijβ

j for some V?

Strong version: Is there a quantity that decreases monotonically in
the flow from the UV to the IR?

Weak version: In the flow between a UV and an IR fixed point, is
there a quantity a such that aUV > aIR?

A monotonically-decreasing quantity was found in d = 2 by
Zamolodchikov in 1986.

At the RG flow endpoints it becomes the central charge of the
corresponding CFT.

The RG flow in d = 2 is gradient in conformal perturbation theory.



a-theorem in d = 4

4d CFT in curved space: Tμ
μ = aE4 + cF

It was suggested by Cardy in 1988 that the coefficient of the Euler
term in the trace anomaly, called a, may be the quantity that
satisfies a (weak) a-theorem in d = 4.

There have been lots of successful checks of Cardy’s suggestion
over the years.

A nice chain of arguments by Komargodski and Schwimmer proved
the weak version of the a-theorem in 2011.

The relevant quantity is indeed a.

In perturbation theory, the strong version of the a-theorem was
established by Jack and Osborn in 1990.

The quantity they considered also becomes a at fixed points.



Does scale imply conformal invariance?

Tμ
μ = ∂μVμ or 0

Scale-invariant Conformal

In d = 2 Polchinski, following up on the work of Zamolodchikov,
showed that scale implies conformal invariance.

In higher spacetime dimensions the situation is still not clear
non-perturbatively.

In d = 4 within perturbation theory a proof can be found using the
results of Jack and Osborn(Fortin, Grinstein & AS), or those of Komargodski
and Schwimmer(Luty, Polchinski & Rattazzi).

There has been lots of activity on this subject recently.



Limit cycles

UV CFT

μ

IR limit cycle

Limit cycles have been suggested as possible endpoints of RG flows
in the early ’70s by Wilson, but they have never been found in
relativistic unitary QFTs.

Limit cycles and ergodic trajectories are actually associated with
theories that are scale-invariant but not conformal.(Fortin, Grinstein & AS)
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Renormalization

For our considerations we need to extend the usual RG by
considering local rescalings of length.

We define the generating functionalW by

W [gi ] = ln
∫

Dφ e−S[φ,g i].

Usual RG:

• A length scale μ−1 is introduced to define the theory.

• Rescaling it can be compensated by changing the couplings,
as described by the Callan–Symanzik equation:

(
μ

∂
∂μ + β i ∂

∂gi

)
W = 0.



Renormalization

Assume now thatW is also a function of a background metric,

W = W [γμν, gi ].

In the absence of dimensionful couplings, a scale transformation of
the metric can be compensated by a corresponding change in μ:

(
μ

∂
∂μ + 2γμν

∂
∂γμν

)
W = 0.

Then, the Callan–Symanzik equation implies that
(
2γμν

∂
∂γμν − β i ∂

∂gi

)
W = 0.

Our aim is to find a local version of this equation.



Local RG

To develop the local RG we imagine that our theory is defined on a
manifold, and so the scale μ−1 is measured using the metric γμν(x)
of the manifold.

Then, the local RG is defined by the expectation that Weyl
rescalings of the metric,

γμν(x) → e−2σ(x)γμν(x), σ(x) : arbitrary,

which induce a change in μ−1(x), can be compensated by adjusting
the couplings, that are now local as well:

gi → gi(x).



Local RG equation

Generator of Weyl transformations: ΔW
σ = 2

∫
ddx

√
γσγμν δ

δγ μν .

Variation of the couplings: Δβ
σ =

∫
ddx

√
γσβ i δ

δg i , β i = μ dg i

dμ .

The local version of the Callan–Symanzik equation is then

ΔW
σW = Δβ

σW + terms with derivatives on γμν , g
i, σ.

Since finite operators can be defined via

Tμν(x) = 2
δS

δγμν(x) , Oi(x) = δS
δgi(x) ,

the local RG equation is equivalent to

γμνTμν = β iOi + terms with derivatives on γμν , g
i.

This is the general form of the trace anomaly.



Weyl consistency conditions

The algebra of a symmetry broken by quantum corrections
constrains the form of the breaking, giving rise to the Wess–Zumino
consistency conditions.

The Weyl group is Abelian, so these are very simple here:

[ΔW
σ − Δβ

σ , Δ
W
σ′ − Δβ

σ′ ]W = 0.

Nevertheless, they have far-reaching consequences.

These consistency conditions can be decomposed in the basis of
the various tensors that appear.

They give rise to both algebraic and differential constraints.



2d c-theorem

In d = 2 we start with

ΔW
σW = Δβ

σW−
∫

d2x
√
γ σ(12cR−1

2 χ ij∂μg
i∂μg j) +

∫
d2x

√
γ ∂μσ wi∂μgi,

restricted by power-counting and diff-invariance.

There is one consistency condition:

∂ic̃ = (χ ij + ∂iwj − ∂jwi)β j, c̃ = c + wiβ
i,

which becomes
β i∂ic̃ = χ ijβ

iβ j.

The quantities c, χ ij, and wi have ambiguities, but the consistency
condition is invariant under them.

There is choice of the ambiguity such that the “metric” χ ij is
positive-definite.

This reproduces Zamolodchikov’s c-theorem.



Strong a-theorem in d = 4

In d = 4 there are more terms that contribute to the anomaly, and
so we get more consistency conditions.

Among them we find again

∂iã = 1
8 (χ ij + ∂iwj − ∂jwi)β j, ã = a + 1

8wiβ
i,

from

ΔW
σW ⊃ Δβ

σW +
∫

d4x
√
γ σ(aE4 + χ ij∂μg

i∂νg
jGμν)

+
∫

d4x
√
γ ∂μσ wi ∂νg

iGμν .

This metric χ ij can be computed perturbatively, and the leading
contribution is found to be positive-definite for the most general
classically scale-invariant QFT in d = 4.(Jack & Osborn)



Scale vs. conformal invariance in d = 4

The dilatation current is
Virial
current

D μ = xνT
μν − Vμ.

It is conserved if
Tμ

μ = ∂μV
μ.

Actually, if Vμ = ∂νLμν the theory is still conformal, for then Tμν can
be improved to be traceless.

In d = 4 theories with scalars, fermions, and gauge fields, the most
general virial is

Vμ = QabφaD
μφb − iPijψ̄iσ̄

μψj ,

where Qab is anti-symmetric and Pij anti-Hermitian.

We see that the virial current generates a rotation in field space.



Limit cycles?

Consider a theory with scalars φa and the usual quartic coupling.
Then,

Tμ
μ = β IOI , Vμ = Qabφa∂μφb , I = (abcd),

and the condition for scale-invariance becomes

β I = (Qg)I ⇒ −dgI

dt
= (Qg)I, t = − ln μ.

Assuming that Q is constant, this is solved by

gI(t) = gJ(0)(e−Qt)IJ.

This is an oscillatory solution since Q is anti-symmetric.

Solutions of the above equations with Q ̸= 0 have been found for
4d QFTs with scalars, fermions, and gauge fields.(Fortin, Grinstein & AS)

It looks like these theories live on limit cycles.



Trace of stress-energy tensor

But is the renormalized stress-energy tensor really given by

Tμ
μ = β IOI ?

This is true only for zero-momentum insertions of Tμ
μ. More

generally,
Tμ

μ = β IOI + ∂μJ
μ.

If we have scalar fields, for example, Jμ = Sabφa∂μφb, with Sab
anti-symmetric.

Using the equations of motion we see then that

Tμ
μ = BIOI, BI = β I − (Sg)I.

S can be computed in perturbation theory using dim-reg.

The lesson is that a theory is conformal if the B-function is zero.



Scale vs. conformal invariance in d = 4

For scale without conformal invariance we have to find solutions to

BI = (Qg)I ⇒ β I − (Sg)I = (Qg)I, (Qg)I ̸= 0.

But this is impossible in d = 4 perturbation theory!

We have the consistency condition

dÃ
dt

= −1
8
χIJB

IB J, χIJ : perturbatively positive-definite.

A scalar like Ã cannot change by an orthogonal transformation of
the couplings, and so

dÃ
dt

= 0 ⇒ BI = 0.

This means that whenever β I = (Rg)I, then (Rg)I = (Sg)I, and thus
(Qg)I = 0.(Fortin, Grinstein & AS)



Scale implies conformal invariance in d = 4

The results of the previous slides have been verified explicitly at
three loops for QFTs in d = 4 with scalars, fermions, and gauge
fields.(Fortin, Grinstein & AS)

The conclusion is that scale implies conformal invariance
perturbatively in d = 4.

We do not know if χ ij is positive-definite non-perturbatively, so we
can come to our conclusion only within perturbation theory.

In perturbation theory the physically-relevant B-function does not
have limit cycles associated with scale invariance.



Strong a-theorem in d > 4

Many nontrivial CFTs are known in d = 6, although none in d > 6.

Very little is known about flows between CFTs in d > 4.

A recent study using the methods of Komargodski & Schwimmer
did not yield an answer regarding the weak a-theorem.(Elvang et al.)

Weyl consistency conditions can uncover general properties of such
flows.

The d = 6 case was worked out explicitly recently.(Grinstein, AS & Stone)

Again, a consistency condition analogous to the one in d = 2, 4 was
discovered.



Consistency condition in any even d

The Euler term is defined in any even d = 2n by

E2n = 1
2n

Ri1 j1k1l1 · · · Rin jnknlnεi1 j1...in jnεk1l1...knln .

Its Weyl variation in d = 2n is

δσ(√γE2n) = √
γ Hμν∇μ∂νσ,

where Hμν is the unique two-index tensor of dimension 2(n − 1)
with the properties of the Einstein tensor.(Lovelock)

Crucially, it is covariantly-conserved:

∇νH
μν = 0.



Consistency condition in any even d

The contributions

∫
d2nx

√
γ σ

[
(−1)naE2n +

∑

p

bpLp + 1
2 χ ij∂μg

i∂νg
jHμν

]

+
∫

d2nx
√
γ ∂μσwi ∂νg

i Hμν ,

always decouple from everything else and lead to

∂iã = (χ ij + ∂iwj − ∂jwi)β j, ã = a + O(β),

and thus to
β i∂iã = χ ijβ

iβ j.

We do not know, however, if χ ij is positive-definite in general.



The metric in φ3 theory in d = 6

To compute quantities like χ ij one needs to renormalize a theory in
curved space with x-dependent couplings.

These quantities are “beta functions” associated with specific
counterterms.

A method well-suited for such computations was developed by
Jack and Osborn in the early ’80s.

It is based on the background-field method and the heat-kernel.

One can compute the effective potential in a manifestly covariant
fashion.

Applying this method to multi-flavor φ3 theory in d = 6 we found
that χ ij is actually perturbatively negative-definite in this case. At
two loops,(Grinstein, AS, Stone & Zhong)

χ(2)
ij = − 1

(64π3)2
1

3240
δij.



Things appear different in d = 6

The fact that the metric is negative-definite implies that in the flow
out of the trivial UV fixed point of φ3 theory, the quantity ã
increases.

Regarding the a-theorem, this proves that there is no hope of a
strong a-theorem for ã in d = 6.

It is conceivable that there are other quantities besides ã that
satisfy a strong a-theorem in d = 6.

Such quantities cannot be of the form ã + O(β2).

In φ3 theory in d = 6 there is no IR fixed point in perturbation
theory. Thus, we cannot probe the weak version of the a-theorem.

Questions of scale vs. conformal invariance and limit cycles in 6d
have not been studied as extensively as in d = 2, 4.



Why the negative sign in d = 6?

Can we get a better understanding of the sign of χ ij in d = 6?

Where does the difference with the d = 2, 4 cases come from?

We do not expect the answer to follow from the fact that φ3 does
not have a vacuum.

Our result is perturbative, so let’s go very close to the fixed point.

There we can neglect all beta functions to a good approximation.

What form does the anomaly take in that case?

More precisely, we can think of the anomaly on a conformal
manifold, where gi are the couplings of the marginal operators.

The anomaly must be given by terms that appear at fixed points
plus conformally-covariant operators acting on g’s.



Anomaly in conformal manifold in d = 2

In d = 2 the Laplacian is a conformally-covariant operator:

∇2 → e2σ∇2, when γμν → e2σγμν.

Therefore, the anomaly contribution quadratic in ∂g comes from

ΔW
σW ⊃ −

∫
d2x

√
γσ 1

2Gijg
i∇2g j.

One can show that there is a choice of ambiguity so that Gij is
positive-definite.

In any even spacetime dimension there is a unique
conformally-covariant “power” of the Laplacian.

It starts as (−∇2)d/2 but in d > 2 it has more terms.



Anomaly in conformal manifold in d = 4

In d = 4 the conformally-covariant power of the Laplacian, first
written down by Fradkin and Tseytlin but commonly called the
Paneitz or Riegert operator, is

Δ4 = ∇2∇2 + ∇μ(4Pμν − 2γμνR̂)∂ν ,

where Pμν = 1
d−2 (Rμν − γμνR̂), R̂ = 1

2(d−1)R.

The relevant contribution to the anomaly is

ΔW
σW ⊃

∫
d4x

√
γσ 1

2Gijg
iΔ4g

j.

Here we can show that there is a choice of the ambiguity so that Gij

is negative-definite.

This is what is required in order to prove the strong a-theorem in
conformal perturbation theory in d = 4.



Something new in d = 6

The conformally-covariant power of the Laplacian here was first
found by Branson. It can be written in the form

Δ6 = −∇2∇2∇2 − 8∇2Pμν∇μ∂ν − 8∇μ∇νPμν∇2 + 6∇2R̂∇2

− ∇μ(8Bμν + 8∇μ∇νR̂ + 48PμλP
λ
ν − 32PμνR̂)∂ν

+ ∇μ(8PρλPρλ − 8R̂2 + 4∇2R̂)∂μ,

where Bμν = ∇λCμνλ − P λρWλμνρ, Cμνλ = ∇λPμν − ∇νPμλ.

But in d = 6 there are two more conformally-covariant operators:

D1 = ∇μWμλρσWν
λρσ∂ν and D2 = ∇μWκλρσW

κλρσ∂μ.

For the anomaly this means that

ΔW
σW ⊃

∫
d6x

√
γσ 1

2 g
i(G1ijD1 + G2ijD2 + G3ijΔ6)g j.



Metric in coupling space in d = 6

ΔW
σW ⊃

∫
d6x

√
γσ 1

2 g
i(G1ijD1 + G2ijD2 + G3ijΔ6)g j.

The metric that appears in the a-theorem-like consistency
condition in d = 6 is not related to G3ij, but rather to G1ij.

Although we can show that G3ij is positive-definite, there is no
argument for positivity of G1ij or G2ij.

At leading order in φ3 theory we have

G1,2,3 ij = c1,2,3δij.

The explicit two-loop heat-kernel result is of this form for some
coefficients c1,2,3.

This is a good check of the calculation from which we extracted χ ij.



Conclusion and future directions

The a-theorem, the relation between scale and conformal
invariance, and the presence of limit cycles in the RG running can
be studied in any even spacetime dimension using the local RG.

Starting from 6d, new ingredients appear whose implications have
not been explored thoroughly.

Future work:

• Non-perturbative arguments in 4d and 6d.

• Explicit computation of the “metric” χ ij in 6d two-form gauge
theory.(Work with Hugh Osborn)

• Holographic understanding of the local RG and the 6d
results.(Work with Hong Liu and Elton Yechao Zhu)

• Study of the weak a-theorem in 6d.

Thank you!
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