ERG and gravity recent developments

Roberto Percacci

SISSA, Trieste

ERG2014 Lefkada, September 22, 2014

Einstein–Hilbert truncation

$$\Gamma_k = \int d^4 x \sqrt{g} rac{1}{16\pi G} (2\Lambda - R)$$

Fourth order gravity

$$\Gamma_{k} = \int d^{4}x \sqrt{g} \left[\frac{1}{16\pi G} (2\Lambda - R) + \alpha R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \beta R_{\mu\nu} R^{\mu\nu} + \gamma R^{2} \right]$$

K.S. Stelle, Phys. Rev. D16, 953 (1977).
J. Julve, M. Tonin, Nuovo Cim. 46B, 137 (1978).
E.S. Fradkin, A.A. Tseytlin, Phys. Lett. 104 B, 377 (1981).
I.G. Avramidi, A.O. Barvinski, Phys. Lett. 159 B, 269 (1985).

Four-derivative truncation of ERG

- O.Lauscher, M. Reuter, Phys. Rev. D 66, 025026 (2002) arXiv:hep-th/0205062
- A. Codello and R. P., Phys.Rev.Lett. 97 22 (2006)
- D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A24, 2233-2241 (2009) arXiv:0901.2984 [hep-th] Nucl. Phys. B824, 168-191 (2010), arXiv:0902.4630 [hep-th]
- M. Niedermaier, Nucl. Phys. B833, 226-270 (2010)
- N. Ohta and R.P. Class. Quant. Grav. 31 015024 (2014); arXiv:1308.3398

f(R) gravity

$$\Gamma_k(g_{\mu
u}) = \int d^4x \sqrt{g} f(R)$$
 $f(R) = \sum_{i=0}^n g_i(k) R^i$

n=6

A. Codello, R.P. and C. Rahmede Int.J.Mod.Phys.A23:143-150 arXiv:0705.1769 [hep-th]; n=8 $\,$

A. Codello, R.P. and C. Rahmede Annals Phys. 324 414-469 (2009) arXiv: arXiv:0805.2909; P.F. Machado, F. Saueressig, Phys. Rev. D arXiv: arXiv:0712.0445 [hep-th] n=35

K. Falls, D.F. Litim, K. Nikolakopoulos, C. Rahmede, arXiv:1301.4191 [hep-th]

f(R) gravity n = 35

Old results	Bi-metric truncations	Functional truncations	Conclusions
Outling			

③ Functional truncations

Anisotropic scaling a.k.a. Hořava-Lifschitz gravity

Fourth-order gravity actions renormalizable but have ghosts. Avoid ghosts by having only two time derivatives. Achieve renormalizability by having higher spatial derivatives. Hints of asymptotic freedom. Challenge: recovery of Lorentz symmetry at low energy.

- \implies Saueressig mon 16:00
- \implies D'Odorico tue 16:40

Background cutoff

If the metric is dynamical, what are fast and the slow modes? Write

$$g_{\mu
u}=ar{g}_{\mu
u}+h_{\mu
u}$$

and use the eigenmodes of $-\bar{\nabla}^2$ as a basis in field space. Define fast and slow modes using this reference basis.

To define the EAA introduce the cutoff

$$\Delta S_k(h; \bar{g}) = rac{1}{2} \int d^d x \sqrt{-\bar{g}} h^{\mu
u} \mathcal{R}_k(-\bar{
abla}^2) h_{\mu
u};$$

The EAA is a functional $\Gamma_k(h; \bar{g})$.

Split symmetry is broken

 $\Gamma(h; \bar{g})$ is not invariant under "split" transformations

$$\delta_\epsilon ar{g}_{\mu
u} = m_{\mu
u}, \qquad \delta_\epsilon h_{\mu
u} = -m_{\mu
u}.$$

This source of split-symmetry breaking vanishes when $k \rightarrow 0$. Should recover this property in the IR.

The background field method

Another source of split-symmetry breaking is the background gauge fixing condition e.g.

$$S_{GF}(h;ar{g})=rac{1}{2}\int d^dx\sqrt{-ar{g}}\,ar{g}^{\mu
u}\chi_\mu\chi_
u\;;\qquad \chi_\mu=ar{
abla}^
u h_{
u\mu}-rac{1}{2}ar{
abla}_\mu h$$

Since S_{GF} and ΔS_k are invariant under coordinate transformations, so is $\Gamma_k(h; \bar{g})$.

0			
		PACI	Itc
\sim	IQ.	resu	163

Comma and semicolon

The EAA is a bi-metric action.

$$g_{\mu
u} = ar{g}_{\mu
u} + h_{\mu
u}$$

$$\Gamma_k(g,\bar{g}) = \Gamma_k(h;\bar{g})$$

Double Einstein-Hilbert truncation

$$egin{aligned} \Gamma_k(g,ar{g}) &=& rac{1}{16\pi G^{\mathrm{Dyn}}}\int d^4x\,\sqrt{g}(2\Lambda^{\mathrm{Dyn}}-R) \ &&+rac{1}{16\pi G^{\mathrm{B}}}\int d^4x\,\sqrt{ar{g}}(2\Lambda^{\mathrm{B}}-ar{R}) \end{aligned}$$

Split-symmetry recovered on a two-parameter subset of RG trajectories.

 \Rightarrow D. Becker mon 16:40

Old results	Bi-metric truncations	Functional truncations	Conclusions
Level expan	sion		

Expand

$$\Gamma_k(h;\bar{g}) = \bar{\Gamma}_k(\bar{g}) + \Gamma_k^{(1)}(h;\bar{g}) + \Gamma_k^{(2)}(h;\bar{g}) + \dots$$
$$\bar{\Gamma}_k(\bar{g}) = \Gamma_k(0;\bar{g})$$

Single-metric truncations: neglect $\Gamma_k^{(n)}(h; \bar{g}), n > 0$.

Example: single-metric truncation with 2-derivative terms

$$\Gamma_{k}(h;\bar{g}) = -\frac{1}{16\pi G} \int d^{d}x \sqrt{\bar{g}} \bar{R}$$

$$+ \frac{1}{16\pi G} \int d^{d}x \sqrt{\bar{g}} \left(\bar{R}^{\mu\nu} - \frac{1}{2}\bar{g}^{\mu\nu}\bar{R}\right) h_{\mu\nu}$$

$$+ \frac{1}{16\pi G} \int d^{d}x \sqrt{\bar{g}} h_{\mu\nu} \Delta^{\mu\nu\rho\sigma} h_{\rho\sigma} + \dots$$

Example: bi-metric truncation with 2-derivative terms

$$\begin{split} \Gamma_k(\bar{g},h) &= -\frac{1}{16\pi G^{(0)}} \int d^d x \sqrt{\bar{g}} \bar{R} \\ &+ \frac{1}{16\pi G^{(1)}} \int d^d x \sqrt{\bar{g}} \left(\bar{R}^{\mu\nu} + \frac{1}{2} \bar{g}^{\mu\nu} \bar{R} \right) h_{\mu\nu} \\ &+ \frac{1}{16\pi G^{(2)}} \int d^d x \sqrt{\bar{g}} h_{\mu\nu} \Delta^{\mu\nu\rho\sigma} h_{\rho\sigma} + \dots \end{split}$$

Conclusions

Example: bi-metric truncation with 2-derivative terms

$$\begin{split} \Gamma_k(\bar{g},h) &= -\frac{1}{16\pi G^{(0)}} \int d^d x \sqrt{\bar{g}} \bar{R} \\ &+ \frac{1}{16\pi G^{(1)}} \int d^d x \sqrt{\bar{g}} \left(\bar{R}^{\mu\nu} + \frac{1}{2} \bar{g}^{\mu\nu} \bar{R} \right) h_{\mu\nu} \\ &+ \frac{1}{16\pi G^{(2)}} \int d^d x \sqrt{\bar{g}} h_{\mu\nu} \Delta^{\mu\nu\rho\sigma} h_{\rho\sigma} + \dots \end{split}$$

Ignore the level 1 couplings and redefine

$$rac{1}{16\pi G^{(2)}} = rac{Z_h}{16\pi G^{(0)}} ; \qquad h_{\mu
u} o \sqrt{32\pi G^{(0)}} h_{\mu
u}$$

Bi-metric level 2 Einstein-Hilbert truncation

Including also cosmological term, gauge fixing and ghost terms

$$\begin{split} \Gamma_{k}(h;\bar{g}) &= \frac{1}{16\pi G} \int d^{d}x \sqrt{\bar{g}} \left(2\Lambda - \bar{R} \right) \\ &+ \frac{Z_{h}}{2} \int d^{d}x \sqrt{\bar{g}} h_{\mu\nu} (\Delta^{\mu\nu\rho\sigma} + M^{2} K^{\mu\nu\rho\sigma}) h_{\rho\sigma} \\ &- \sqrt{2} Z_{c} \int d^{d}x \sqrt{\bar{g}} \ \bar{c}_{\mu} \Big(\bar{D}^{\rho} \bar{g}^{\mu\kappa} g_{\kappa\nu} D_{\rho} + \bar{D}^{\rho} \bar{g}^{\mu\kappa} g_{\rho\nu} D_{\kappa} - \bar{D}^{\mu} \bar{g}^{\rho\sigma} g_{\rho\nu} D_{\sigma} \Big) c^{\nu} \end{split}$$

The anomalous dimensions

We include a factor Z_h , Z_c in the definition of the cutoff:

$$\Delta S_k(h;\bar{g}) = \frac{Z_h}{2} \int d^d x \sqrt{\bar{g}} h_{\mu\nu} K^{\mu\nu\alpha\beta} R_k(-\bar{D}^2) h_{\rho\sigma}$$

This leads to beta functions of the form

$$A(ilde{\Lambda}, ilde{G}) + B(ilde{\Lambda}, ilde{G}) \eta_h$$
; $\eta_h = -\partial_t Z_h/Z_h$

To close flow equations need a formula for η .

Anomalous dimensions

Generally three options:

- $\eta = 0$ (one loop)
- In the single-metric calculations, identify Z_h with $\frac{1}{16\pi G}$. Consequently identify η_h with $k \frac{d \log G}{dk}$
- $\bullet\,$ in bi-metric level-2 calculations compute η from two point function of graviton

[A. Codello, G. d'Odorico, C. Pagani, Phys.Rev. D89 (2014) 081701, arXiv:1304.4777 [gr-qc]]
[N. Christiansen, B. Knorr, J.M. Pawlowski, A. Rodigast, arxiv:1403.1232 [hep-th]]

Bi-metric flow in $\tilde{\Lambda}$ - \tilde{G} - \tilde{M}^2 space

 $[P.Donà, A. Eichhorn, R.P., unpublished] \Rightarrow Christiansen mon 17:00$

Enter matter

- because it's there
- because it may help (large N limit)
- because pure gravity has no local observables
- because experimental constraints more likely

[L. Griguolo, R.P. Phys. Rev. D 52, 5787 (1995)]
[R.P., D.Perini, Phys.Rev. D 67 081503 (2003)]
[R.P., D.Perini, Phys. Rev. D68, 044018 (2004)]
[G. Narain. R.P. Class. Quant. Grav. 27 075001 (2010)]
[P. Donà, A. Eichhorn, R.P. arXiv:1311.2898 [hep-th](2013)]

Bimetric EH with minimally coupled matter

$$\begin{split} \Gamma_{k}(\bar{g},h) &= \frac{1}{16\pi G} \int d^{d}x \sqrt{\bar{g}} \left(-\bar{R}+2\Lambda\right) \\ &+ \frac{Z_{h}}{2} \int d^{d}x \sqrt{\bar{g}} h_{\mu\nu} K^{\mu\nu\alpha\beta} \left((-\bar{D}^{2}-2\Lambda)\mathbf{1}_{\alpha\beta}^{\rho\sigma} + W_{\alpha\beta}^{\rho\sigma}\right) h_{\rho\sigma} \\ &- \sqrt{2} Z_{c} \int d^{d}x \sqrt{\bar{g}} \ \bar{c}_{\mu} \left(\bar{D}^{\rho} \bar{g}^{\mu\kappa} g_{\kappa\nu} D_{\rho} + \bar{D}^{\rho} \bar{g}^{\mu\kappa} g_{\rho\nu} D_{\kappa} - \bar{D}^{\mu} \bar{g}^{\rho\sigma} g_{\rho\nu} D_{\sigma}\right) c^{\nu} \end{split}$$

$$S_{S} = \frac{Z_{S}}{2} \int d^{d}x \sqrt{g} g^{\mu\nu} \sum_{i=1}^{N_{S}} \partial_{\mu} \phi^{i} \partial_{\nu} \phi^{i}$$

$$S_D = iZ_D \int d^d x \sqrt{g} \sum_{i=1}^{N_D} \bar{\psi}^i \nabla \psi^i,$$

$$S_V = \frac{Z_V}{4} \int d^d x \sqrt{g} \sum_{i=1}^{N_V} g^{\mu\nu} g^{\kappa\lambda} F^i_{\mu\kappa} F^i_{\nu\lambda} + \dots$$

Gravitational beta functions

$$\begin{split} \frac{d\tilde{\Lambda}}{dt} &= -2\tilde{\Lambda} + \frac{8\pi\tilde{G}}{(4\pi)^{d/2}d(d+2)\Gamma[d/2]} \left[\frac{d(d+1)(d+2-\eta_h)}{1-2\tilde{\Lambda}} - 4d(d+2-\eta_c) \right. \\ &+ 2N_5(2+d-\eta_5) - 2N_D 2^{[d/2]}(2+d-\eta_D) + 2N_V(d^2-4-d\eta_V) \right] \\ &- \frac{4\pi\tilde{G}\tilde{\Lambda}}{3d(4\pi)^{d/2}\Gamma[d/2]} \left[\frac{d(5d-7)(d-\eta_h)}{1-2\tilde{\Lambda}} + 4(d+6)(d-\eta_c) \right. \\ &- 2N_5(d-\eta_5) - N_D 2^{[d/2]}(d-\eta_D) + 2N_V(d(8-d)-(6-d)\eta_V) \right] \\ \\ \frac{d\tilde{G}}{dt} &= (d-2)\tilde{G} - \frac{4\pi\tilde{G}^2}{3d(4\pi)^{d/2}\Gamma(d/2)} \left[\frac{d(5d-7)(d-\eta_h)}{1-2\tilde{\Lambda}} + 4(d+6)(d-\eta_c) \right. \\ &- 2N_5(d-\eta_5) - N_D 2^{[d/2]}(d-\eta_D) + 2N_V(d(8-d)-(6-d)\eta_V) \right] \end{split}$$

Perturbative beta functions with matter

$$\beta_{\tilde{G}} = 2\tilde{G} + \frac{\tilde{G}^2}{6\pi} \left(N_S + 2N_D - 4N_V - 46\right),$$

$$\beta_{\tilde{\Lambda}} = -2\tilde{\Lambda} + \frac{\tilde{G}}{4\pi} \left(N_S - 4N_D + 2N_V + 2\right)$$

$$+ \frac{\tilde{G}\tilde{\Lambda}}{6\pi} \left(N_S + 2N_D - 4N_V - 16\right)$$

$$\begin{split} \tilde{\Lambda}_* &= -\frac{3}{4} \frac{N_S - 4N_D + 2N_V + 2}{N_S + 2N_D - 4N_V - 31} \; , \\ \tilde{G}_* &= -\frac{12\pi}{N_S + 2N_D - 4N_V - 46} \; . \end{split}$$

0				
•••	ы	ro	CII	1tc
\sim	IU		зu	113

Exclusion plot $N_V = 0$

I DIC FACUL	te	
Old Lesul	1.3	

Exclusion plot $N_V = 12$

Old results	Bi-metric truncations	Functional truncations	Conclusions
Specific mod	dels		

model	Ns	N_D	N_V	$ ilde{G}_*$	$\tilde{\Lambda}_{*}$	θ_1	θ_2	η_{h}
no matter	0	0	0	0.77	0.01	3.30	1.95	0.27
SM	4	45/2	12	1.76	-2.40	3.96	1.64	2.98
SM + dm scalar	5	45/2	12	1.87	-2.50	3.96	1.63	3.15
${ m SM}{ m +}$ 3 $ u$'s	4	24	12	2.15	-3.20	3.97	1.65	3.71
${ m SM}{+}3 u$'s								
+ axion+dm	6	24	12	2.50	-3.62	3.96	1.63	4.28
MSSM	49	61/2	12	-	-	-	-	-
SU(5) GUT	124	24	24	-	-	-	-	-
SO(10) GUT	97	24	45	-	-	-	-	-

Exclusion plot $N_V = 12$, d = 6

f(R) gravity again

$$\Gamma_k(g_{\mu
u}) = \int d^4x \sqrt{g} f(R)$$
 $f(R) = \sum_{i=0}^{\infty} g_i(k) R^i$

Dario Benedetti, Francesco Caravelli, JHEP 1206 (2012) 017, Erratum-ibid. 1210 (2012) 157, arXiv:1204.3541[hep-th] Dario Benedetti, Europhys. Lett. 102 (2013) 20007, arXiv:1301.4422[hep-th] Juergen A. Dietz, Tim R. Morris, JHEP 1301 (2013) 108, arXiv:1211.0955[hep-th] Juergen A. Dietz, Tim R. Morris, JHEP 1307 (2014) 064, arXiv:1311.1081[hep-th] Maximilian Demmel, Frank Saueressig, Omar Zanusso, JHEP 1406 (2014) 026, arXiv:1208.2038[hep-th] Maximilian Demmel, Frank Saueressig, Omar Zanusso, JHEP 1211 (2012) 131, arXiv:1208.2038[hep-th]

 \implies Morris next talk

Gravity+scalar

$$\Gamma_{k}[g,\phi] = \int d^{d}x \sqrt{g} \left(V(\phi^{2}) - F(\phi^{2})R + \frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi \right)$$

[G. Narain, R.P., Class. and Quantum Grav. 27, 075001 (2010)]
[T. Henz, J. Pawlowski, A. Rodigast and C. Wetterich, Phys. Lett. B727 (2013) 298]
[D. Benedetti and F. Guarnieri, New J. of Phys. (2014) 053051]

 \implies Henz mon 18:10

 \implies Wetterich fri 19:10

Functional flow of F, V

$$\begin{split} \partial_t V &= \frac{k^4}{192\pi^2} \left\{ 6 + \frac{30\,V}{\Psi} + \frac{6(k^2\,\Psi + 24\,\phi^2\,k^2\,F'\,\Psi' + k^2\,F\Sigma_1)}{\Delta} + \text{terms containing } \partial_t F \right\} \;, \\ \partial_t F &= \frac{k^2}{2304\pi^2} \left\{ 150 + \frac{120\,k^2\,F\,(3\,k^2\,F - V)}{\Psi^2} - \frac{24}{\Delta} \left(24\,\phi^2\,k^2\,F'\,\Psi' + k^2\,\Psi + k^2\,F\Sigma_1 \right) \right. \\ &\left. - \frac{36}{\Delta^2} \left[-4\,\phi^2\,(6\,k^4\,F'^2 + \Psi'^2)\,\Delta + 4\,\phi^2\,\Psi\,\Psi'\,(7\,k^2\,F' - V')\,(\Sigma_1 - k^2) + 4\,\phi^2\Sigma_1\,(7\,k^2\,F' - V')\,(2\,\Psi\,V' - V\,\Psi') \right. \\ &\left. + 2\,k^4\,\Psi^2\,\Sigma_2 + 48\,k^4\,F'\,\phi^2\,\Psi\,\Psi'\,\Sigma_2 - 24\,k^4F\,\phi^2\,\Psi'^2\,\Sigma_2 \right] + \text{terms containing } \partial_t F \end{split}$$

where we have defined the shorthands:

$$\Psi = k^2 F - V \, ; \quad \Sigma_1 = k^2 + 2 \, V' + 4 \, \phi^2 \, V'' \ \, ; \quad \Sigma_2 = 2 \, F' + 4 \, \phi^2 \, F'' \ \, ; \quad \Delta = \left(12 \, \phi^2 \, \Psi'^2 + \Psi \, \Sigma_1 \right) .$$

In d = 3 no trace of gravitationally dressed WF fixed point: in polynomial expansion, all coefficients of ϕ^2 are negative.

Scalar+gravity in exponential parametrization

- Exponential parametrization: $g_{\mu\nu} = \bar{g}_{\mu\rho}(e^h)^{
 ho}{}_{
 u}$
- Unimodularity [A. Eichhorn (2013)] \implies Saltas mon 18:30
- Choice of gauge

$$\dot{v} = -3 v + \frac{1}{2} \phi v' + \frac{f + 4f'^2}{6\pi^2 (4f'^2 + f(1 + v''))}$$

$$\dot{f} = -f + \frac{1}{2} \phi f' + \frac{25}{36\pi^2} + f \frac{(f + 4f'^2)(1 + 3v'' - 2f'') + 2fv''^2}{12\pi^2 (4f'^2 + f(1 + v''))^2}$$

[G.P. Vacca and R.P., to appear] Compare with equation for pure scalar in LPA

$$\dot{v} = -3 v + rac{1}{2} \phi v' + rac{1}{6 \pi^2 (1 + v'')}$$

Analytic solutions

Solution 1

$$egin{aligned} &v_* = rac{1}{18\pi^2} pprox 0.00562 \ ; & f_* = rac{7}{9\pi^2} pprox 0.0788 \ & ilde{G}_* = rac{9\pi}{112} pprox 0.252 \ ; & ilde{\Lambda}_* = rac{1}{28} pprox 0.0357 \end{aligned}$$

Solution 2

$$egin{aligned} &v_* = rac{1}{18\pi^2} pprox 0.00562 \ ; & f_* = rac{25}{36\pi^2} + rac{1}{4} \phi^2 \ & ilde{G}_* = rac{9\pi}{100} pprox 0.283 \ ; & ilde{\Lambda}_* = rac{1}{25} = 0.04 \end{aligned}$$

Possible nontrivial solution

Match (Padé approximant to) polynomial soln of order $(\phi^2 - \kappa)^{12}$ to large ϕ solutions $v = A\phi^6 + \ldots$, $f = B\phi^2 + \ldots$ (up to ϕ^{-16})

Figure : Black: approximate solution expanded around the minimum of the potential; red: approximate solution for large ϕ with A = 3.38, B = -0.141.

Comparison to pure scalar theory

Figure : Solid curve: potential with gravity; dashed curve: LPA approximation of potential of Wilson-Fisher fixed point without gravity.

Conclusions

Perturbative renormalizability played a decisive role in the construction of the Weinberg-Salam model.

Still the SM is incomplete and nowadays is generally regarded as an EFT. The absence (or smallness) of nonrenormalizable couplings can be viewed as a consequence of scale separation.

It is perhaps time to use again renormalizability as a criterion to select a viable theory of the fundamental interactions, including gravity.

Conclusions

Perturbative renormalizability cannot play this role, but perhaps asymptotic safety can.

Most important gain: predictivity.

Calculations are becoming more complex, but appropriate techniques exist the way forward is relatively clear.

Expect to hear more at ERG2016.