Dynamical Locking of the Chiral and the Deconfinement Phase Transition in QCD at Finite Chemical Potential

Paul Springer Jens Braun, Marc Leonhardt, Stefan Rechenberger

7th International ERG Conference Lefkada, Greece

September 22, 2014

- Confinement degrees of freedom
- $\chi SB \Leftrightarrow$ quark self-interactions

< ∃⇒

Э

- Confinement degrees of freedom
- $\chi SB \Leftrightarrow$ quark self-interactions

 \Downarrow

However, quark self-interactions are generated by gluodynamics

.⊒ .⊳

- Confinement ⇔ gauge degrees of freedom
- $\chi SB \Leftrightarrow$ quark self-interactions

 \Downarrow

However, quark self-interactions are generated by gluodynamics

イロト イポト イヨト イヨト

Lattice QCD:

At $\mu = 0$ pseudo-critical temperatures are very similar for both crossovers e.g. [Karsch et al., 2003], [Endrodi et al., 2006], [Aoki et al., 2009] etc.

- Confinement ⇔ gauge degrees of freedom
- $\chi SB \Leftrightarrow$ quark self-interactions

 \Downarrow

However, quark self-interactions are generated by gluodynamics

イロト イポト イヨト イヨト

Lattice QCD:

At $\mu = 0$ pseudo-critical temperatures are very similar for both crossovers e.g. [Karsch et al., 2003], [Endrodi et al., 2006], [Aoki et al., 2009] etc.

Deeper relation between chiral and confining dynamics???

λ_{ψ} -deformed QCD

We investigate λ_{ψ} -deformed QCD (model) without gluons (basically PNJL model) with two massless flavors, N_c colors and finite chemical potential:

$$\mathcal{L} = \bar{\psi} (\mathrm{i}\partial \!\!\!/ + \gamma_0 \bar{\mathrm{g}} \langle A_0 \rangle + \mathrm{i} \gamma_0 \mu) \psi + \frac{\lambda_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

- two parameters: $\lambda_{\psi}(\Lambda)$, $\langle A_0 \rangle$
- large λ_{ψ} triggers χSB
- deconfinement order parameter:

$$\operatorname{Tr}_{F} L[\langle A_{0} \rangle] = \frac{1}{N_{c}} \operatorname{Tr}_{F} [\mathcal{P} e^{i\beta \overline{g} \langle A_{0} \rangle}]^{\operatorname{P} = 1} \frac{1}{N_{c}} \langle \operatorname{Tr}_{F} [\mathcal{P} e^{i\overline{g} \int_{0}^{\beta} A_{0}}] \rangle$$
e.g. [Meisinger, Ogilvie, 1996]

• Tool: Wetterich flow equation [C. Wetterich, 1993]

イロト イポト イヨト イヨト

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ +)\psi + \frac{\bar{\lambda}_{\psi}}{2}[(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$
RG-flow equation:
 $T = 0, \ \mu = 0, \ \langle A_0 \rangle = 0$
(k is momentum scale)
 $k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C\lambda_{\psi}^2$
 $\overline{\lambda_{\psi}(\Lambda) > \lambda_{\psi}^* \Rightarrow \chi SB}$

(日) (同) (E) (E) (E)

$$\mathcal{L} = \bar{\psi} (i\partial + + i\gamma_0 \mu) \psi + \frac{\bar{\lambda}_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$
RG-flow equation:
 $T \neq 0, \mu \neq 0, \langle A_0 \rangle = 0$
(k is momentum scale)
 $k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C(\frac{T}{k}, \frac{\mu}{k})\lambda_{\psi}^2$

 $\lambda_{\psi}(\Lambda) > \lambda_{\psi}^*$, T or (and) μ increase \Rightarrow restoration of χ -Symmetry

(4回) (注) (注) (注) (注)

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ + \gamma_0 \bar{g} \langle A_0 \rangle + i\gamma_0 \mu)\psi + \frac{\bar{\lambda}_{\psi}}{2}[(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$
RG-flow equation:
 $T \neq 0, \mu \neq 0, \langle A_0 \rangle \neq 0$
(color-confined regime)
 $k\partial_k \lambda_{\psi} = 2\lambda_{\psi} - C(\frac{T}{k}, \frac{\mu}{k}, \langle A_0 \rangle)\lambda_{\psi}^2$
Finite $\langle A_0 \rangle \Rightarrow$ fixed point "moves" to the left

A ►

★ E > < E >

æ

$$\mathcal{L} = \bar{\psi} (\mathrm{i}\partial \!\!\!/ + \gamma_0 \bar{\mathrm{g}} \langle A_0 \rangle + \mathrm{i} \gamma_0 \mu) \psi + \frac{\lambda_{\psi}}{2} [(\bar{\psi}\psi)^2 - (\bar{\psi}\vec{\tau}\gamma_5\psi)^2)]$$

- PNJL/PQM-models ⇐⇒ Large-N_c in the coupling of the matter and gauge sector (should not be confused with the standard large-N_c approximation, such as neglecting pion fluctuations etc.)
- $T_{\chi} \geq T_d$ in the phase diagram of PNJL/PQM-models
 - ⇒ existence of quarkyonic phase in PNJL/PQM-models under debate
 - ⇒ Constraint on parametrization of Polyakov potential

・ロト ・回ト ・ヨト ・ヨト

Thank you for your attention!

白 ト イヨト イヨト

æ

- We use the data for (A₀) for pure SU(N_c) gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed!
 [Braun, Gies, Pawlowski, 2010], [Braun, Eichhorn, Gies, Pawlowski, 2010]
- Back coupling \rightarrow corrections, but the main results should be the same on the qualitative level

・ 回 と ・ ヨ と ・ モ と …

3

- We use the data for (A₀) for pure SU(N_c) gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed!
 [Braun, Gies, Pawlowski, 2010]. [Braun, Eichhorn, Gies, Pawlowski, 2010]
- $\bullet\,$ Back coupling \to corrections, but the main results should be the same on the qualitative level

- We use the data for (A₀) for pure SU(N_c) gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed!
 [Braun, Gies, Pawlowski, 2010]. [Braun, Eichhorn, Gies, Pawlowski, 2010]
- $\bullet\,$ Back coupling \to corrections, but the main results should be the same on the qualitative level

・ 同 ト ・ ヨ ト ・ ヨ ト

- We use the data for (A₀) for pure SU(N_c) gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed!
 [Braun, Gies, Pawlowski, 2010]. [Braun, Eichhorn, Gies, Pawlowski, 2010]
- $\bullet\,$ Back coupling \to corrections, but the main results should be the same on the qualitative level

イロト イヨト イヨト イヨト

- We use the data for (A₀) for pure SU(N_c) gauge theory, i. e., we drop the back coupling of fermions to the gauge sector: T_d is fixed!
 [Braun, Gies, Pawlowski, 2010]. [Braun, Eichhorn, Gies, Pawlowski, 2010]
- $\bullet\,$ Back coupling \to corrections, but the main results should be the same on the qualitative level

