Super Efimov effect in mass imbalanced systems

together with Yusuke Nishida

Sergej Moroz
University of Washington

Super Efimov effect

At p-wave resonance near threshold:
Infinite tower of $l= \pm 1$ trimer bound states

Super exponential scaling!

talk of
Yusuke Nishida

Experiments

- Efimov physics in cold atom experiments since 2006
- Quasi 2d fermions near p-wave resonance eth 2005
- Trimers sizes:

$$
a_{3}^{(n)} \propto \exp \left(e^{3 \pi n / 4+\theta}\right)
$$

Radius of observable Universe $10^{26} \mathrm{~m}$

Super exponential scaling

Can we somehow increase γ ?

Mass imbalanced system

- Efimov problem for heavy-heavy-light system

Efimor 1972
Amado\&Noble 1972

- Born-Oppenheimer approximation: first freeze heavy particles
s-wave resonance in 3d

identical heavy bosons

Heavy-heavy spectrum

Multiple Efimov states observed in Li-Cs mixture $\substack{\begin{subarray}{c}{\text { chicegengend } \\ \text { Hedideg } \\ \text { 20l4 }} }} \end{subarray}$

Mass imbalanced system

Identical particles are fermions or bosons
Non-resonant s-wave interactions allowed

Two-body from RG

$$
s=\ln \Lambda / k \quad \quad \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}}
$$

$$
g^{2}(s)=\frac{1}{\frac{1}{g^{2}(0)}+\frac{2 \mu^{2}}{\pi} s}
$$

(b)

$$
v_{12}(s)=\frac{1}{\frac{1}{v_{12}(0)}-\frac{\mu}{\pi} s}
$$

Logarithmic running to free fixed point!

Three-body from RG

RG flow of heavy-heavy-light coupling u_{1}

Three-body from RG

Double log solution: $\quad s u_{1}(s) \quad \rightarrow \mp \frac{\pi}{m_{2}}-\frac{\pi \gamma}{\nu_{1}} \cot [\gamma(\ln s-\theta)]$
RG divergences= trimer bound states

in Li-Cs mixture $\gamma \approx 10.7$
Super Efimov spectrum $E_{n} \propto \exp \left(-2 e^{\pi n / \gamma+\theta}\right)$

Born-Oppenheimer approximation

Induced heavy-heavy potential:

$$
V(R)=-\frac{1}{m_{2} R^{2} \ln (R \Lambda)}
$$

p-wave resonance in 2d

identical heavy bosons/fermions

BO spectrum differs from super Efimov spectrum!

$$
E_{n} \propto \exp \left(-2 e^{2 \frac{m_{2}}{m_{1}} \pi n+\theta}\right)
$$

Failure of BO approximation

Heavy particles time scale：$\quad T_{\text {heavy }} \sim m_{1} R^{2}$
Light particles time scale：$\quad T_{\text {light }} \sim m_{2} R^{2} \ln (R \Lambda)$
Can not use adiabatic approximation if

$$
T_{\text {light }} \gtrsim T_{\text {heary }}
$$

BO approximation breaks down for large distances

$$
R \Lambda \gtrsim e^{m_{1} / m_{2}}
$$

Conclusion

- Super Efimov effect was extended to mass imbalanced three-body systems
- Mixtures with high mass imbalance are favorable for experimental verification
- Intermediate Born-Oppenheimer scaling?

Extra slides

p-wave in 2d

Square well solution

$$
\frac{d J_{l}(k r) / d r}{J_{l}(k r)}=\frac{d K_{l}(\kappa r) / d r}{K_{l}(\kappa r)}
$$

In p-wave critical attraction needed $\quad \mathrm{V}_{0} r_{0}^{2}=5.784$

Normalized wave-function

$$
\psi(r)=\frac{\kappa}{\sqrt{2 \pi}} \frac{K_{1}(\kappa r)}{\sqrt{\ln \left(\kappa r_{0}\right)}}
$$

- No scale invariance
- Point-like boson as $r_{0} \rightarrow 0$

P-wave superfluids

From mean-field:
Volovik, Read, Green,...

- Chiral condensate $\Delta_{\mathbf{p}}=\left(p_{x} \pm i p_{y}\right) \hat{\Delta}$ preferred
- Topological phase transition at $\mu=0$
- Chiral Majorana modes on boundaries
- Toy model for a film of ${ }^{3} \mathrm{He}$

Sometimes mean-field is not good enough near resonance!

P-wave model in d=2

$$
\begin{aligned}
\mathcal{L}= & \psi^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2}\right) \psi+\phi_{a}^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{4}-\varepsilon_{0}\right) \phi_{a} \\
& +g \phi_{a}^{\dagger} \psi\left(-i \nabla_{a}\right) \psi+g \psi^{\dagger}\left(-i \nabla_{-a}\right) \psi^{\dagger} \phi_{a} \\
& +v_{3} \psi^{\dagger} \phi_{a}^{\dagger} \phi_{a} \psi+v_{4} \phi_{a}^{\dagger} \phi_{-a}^{\dagger} \phi_{-a} \phi_{a}+v_{4}^{\prime} \phi_{a}^{\dagger} \phi_{a}^{\dagger} \phi_{a} \phi_{a} \\
& \uparrow \uparrow \\
& \text { spinless } \quad \text { composite } \\
& \text { fermion } \quad l= \pm 1 \text { boson }
\end{aligned}
$$

-P-wave resonance \leftrightarrow zero energy bound state -All dimensionless couplings are included

Efimov effect from RG

Flow of atom-dimer vertex: $\quad \mathrm{RG}=$ one-loop diagrams

bosons vs fermions in 3d

Tetramers can be found from RG

Effective potential

$$
V(R)=-\frac{1}{4 R^{2}}-\frac{1 / 4+r^{2}}{\left(R \ln \frac{R}{R_{0}}\right)^{2}}
$$

Semiclassical solution with double Langer correction

