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Pencil, paper and sticky tape 
It could not have been easier to obtain graphene, the miraculous material that comes from ordinary graphite such 
as is found in pencils. However, the most simple and obvious things are often hidden from our view.

Graphene consists of carbon atoms joined together in a flat lattice – similar to a honeycomb structure but just one 
atom thick. One millimeter of graphite actually consists of three million layers of graphene stacked on top of one 
another. The layers are weakly held together and are therefore fairly simple to tear off and separate. Anyone who 
has written something with an ordinary pencil has experienced this, and it is possible, when they did, that only a 
single layer of atoms, graphene, happened to end up on the paper.

This is what happened when Andre Geim and Konstantin Novoselov used adhesive tape to rip off thin flakes from 
a larger piece of graphite in a more methodical manner. In the beginning they got flakes consisting of many layers 
of graphene, but when they repeated the tape-trick ten to twenty times the flakes got thinner and thinner. The next 
step was to find the miniscule fragments of graphene among the thicker layers of graphite and other carbon scraps. 
This is when they got their second brilliant idea: in order to be able to see the results of their meticulous work, the 
scientists from Manchester decided to attach the flakes to a plate of oxidized silicon, the standard working material 
in the semiconductor industry. 

When the plate is placed in a standard microscope one can see a rainbow of colours, similar to what is seen when 
oil is spilled onto water, and thus determine the number of graphene layers in the flakes. The thickness of the 
underlying layer of silicon dioxide, was in turn, crucial for revealing the graphene. Under the microscope graph-

ene now came into view – a truly two-dimensional 
crystalline material that exists at room tempera-
ture. Graphene is a perfectly regular network of 
carbon with only two dimensions, width and 
length. The basic unit of this pattern consists of six 
carbon atoms joined together chemically. Graph-
ene, as well as some other forms of carbon that 
we know of, consists of billions of carbon atoms 
joined together in a hexagonal pattern.

Waiting for the discovery
Graphene has of course always existed; the cru-
cial thing was to be able to spot it. Similarly, 
other naturally occurring forms of carbon have 
appeared before scientists when they viewed 
them in the right way: first nanotubes and then 
hollow balls of carbon, fullerenes (Nobel Prize 
in Chemistry 1996). Trapped inside graphite, 
graphene was waiting to be released (see fig. 2).
No-one really thought that it was possible. 

Figure 2. Graphene from graphite. Graphite is a 
basic material found in nature. When taken apart 
graphite sheets become graphene. A rolled up layer 
of graphene forms a carbon nanotube, folded up it 
becomes a small football, fullerene. Hidden inside 
graphite, graphene was waiting to be discovered.©
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• Graphene: flat single layer of C-atoms in 2D hexagonal lattice	



• sp2-Hybrid-orbitals of C-atoms → σ-bonds away from ϵF

Real space structure

~0.335nm

2D crystal
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• Conduction & valence e-: π-bonds of pz-orbitals
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Figure 2. One-atom-thick single crystals: the thinnest material you will ever see. a, Graphene visualized by 
atomic-force microscopy (adapted from ref. 8). The folded region exhibiting a relative height of |4Å clearly indicates 
that it is a single layer. b, A graphene sheet freely suspended on a micron-size metallic scaffold. The transmission-
electron-microscopy image is adapted from ref. 18. c, scanning-electron micrograph of a relatively large graphene 
crystal, which shows that most of the crystal’s faces are zigzag and armchair edges as indicated by blue and red lines 
and illustrated in the inset (T.J. Booth, K.S.N, P. Blake & A.K.G. unpublished). 1D transport along zigzag edges and 
edge-related magnetism are expected to attract significant attention. 

Graphene’s quality clearly reveals itself in a pronounced ambipolar electric field effect (Fig. 3a) such that 
charge carriers can be tuned continuously between electrons and holes in concentrations n as high as 1013cm-2 
and their mobilities P can exceed 15,000 cm2/Vs even under ambient conditions7-10. Moreover, the observed 
mobilities weakly depend on temperature T, which means that P at 300K is still limited by impurity scattering 
and, therefore, can be improved significantly, perhaps, even up to |100,000 cm2/Vs. Although some 
semiconductors exhibit room-temperature P as high as |77,000 cm2/Vs (namely, InSb), those values are quoted 
for undoped bulk semiconductors. In graphene, P remains high even at high n (>1012cm-2) in both electrically- 
and chemically- doped devices41, which translates into ballistic transport on submicron scale (up to |0.3 Pm at 
300K). A further indication of the system’s extreme electronic quality is the quantum Hall effect (QHE) that can 
be observed in graphene even at room temperature (Fig. 3b), extending the previous temperature range for the 
QHE by a factor of 10.  

An equally important reason for the interest in graphene is a unique nature of its charge carriers. In condensed 
matter physics, the Schrödinger equation rules the world, usually being quite sufficient to describe electronic 
properties of materials. Graphene is an exception: Its charge carriers mimic relativistic particles and are easier 
and more natural to describe starting with the Dirac equation rather than the Schrödinger equation4-6,42-47. 
Although there is nothing particularly relativistic about electrons moving around carbon atoms, their interaction 
with a periodic potential of graphene’s honeycomb lattice gives rise to new quasiparticles that at low energies E 

Atomic-force microscopy

rel. height ~ 0.4nm	


→ single layer

Transmission-electron spectroscopy

suspended on	


scaffold

large flake

Scanning-electron micrograph

A.K.Geim, K.S. Novoselov

Nature Materials 6, 183-191 (2007)

In the lab

http://arxiv.org/find/cond-mat/1/au:+Geim_A/0/1/0/all/0/1
http://arxiv.org/find/cond-mat/1/au:+Novoselov_K/0/1/0/all/0/1


• Density: 0.77mg/m2	



‣ even the smallest gas atom (He) cannot pass through it	



• Optical transparency:	



‣ Absorbs only 2.3% of the visible light intensity	



• Strength: breaking strength=42N/m.	



‣Thin film of steel (0.335nm) has 2D breaking strength ~0.3N/m	



• Electrical conductivity: as well as copper	



‣ 2D sheet conductivity σ = e n µ	



- high electron mobility µ, weakly depends on T even at ~ 300K	



- mobility remains high even in doped devices → in contrast to bulk semiconductors 

Fun facts



• Density: 0.77mg/m2	



‣ even the smallest gas atom (He) cannot pass through it	



• Optical transparency:	



‣ Absorbs only 2.3% of the visible light intensity	



• Strength: breaking strength=42N/m.	



‣Thin film of steel (0.335nm) has 2D breaking strength ~0.3N/m	



• Electrical conductivity: as well as copper	



‣ 2D sheet conductivity σ = e n µ	



- high electron mobility µ, weakly depends on T even at ~ 300K	



- mobility remains high even in doped devices → in contrast to bulk semiconductors 

Fun facts



Tight-binding model

‣ π band structure of graphene:

trino” billiards !Berry and Modragon, 1987; Miao et al.,
2007". It has also been suggested that Coulomb interac-
tions are considerably enhanced in smaller geometries,
such as graphene quantum dots !Milton Pereira et al.,
2007", leading to unusual Coulomb blockade effects
!Geim and Novoselov, 2007" and perhaps to magnetic
phenomena such as the Kondo effect. The transport
properties of graphene allow for their use in a plethora
of applications ranging from single molecule detection
!Schedin et al., 2007; Wehling et al., 2008" to spin injec-
tion !Cho et al., 2007; Hill et al., 2007; Ohishi et al., 2007;
Tombros et al., 2007".

Because of its unusual structural and electronic flex-
ibility, graphene can be tailored chemically and/or struc-
turally in many different ways: deposition of metal at-
oms !Calandra and Mauri, 2007; Uchoa et al., 2008" or
molecules !Schedin et al., 2007; Leenaerts et al., 2008;
Wehling et al., 2008" on top; intercalation #as done in
graphite intercalated compounds !Dresselhaus et al.,
1983; Tanuma and Kamimura, 1985; Dresselhaus and
Dresselhaus, 2002"$; incorporation of nitrogen and/or
boron in its structure !Martins et al., 2007; Peres,
Klironomos, Tsai, et al., 2007" #in analogy with what has
been done in nanotubes !Stephan et al., 1994"$; and using
different substrates that modify the electronic structure
!Calizo et al., 2007; Giovannetti et al., 2007; Varchon et
al., 2007; Zhou et al., 2007; Das et al., 2008; Faugeras et
al., 2008". The control of graphene properties can be
extended in new directions allowing for the creation of
graphene-based systems with magnetic and supercon-
ducting properties !Uchoa and Castro Neto, 2007" that
are unique in their 2D properties. Although the
graphene field is still in its infancy, the scientific and
technological possibilities of this new material seem to
be unlimited. The understanding and control of this ma-
terial’s properties can open doors for a new frontier in
electronics. As the current status of the experiment and
potential applications have recently been reviewed
!Geim and Novoselov, 2007", in this paper we concen-
trate on the theory and more technical aspects of elec-
tronic properties with this exciting new material.

II. ELEMENTARY ELECTRONIC PROPERTIES OF
GRAPHENE

A. Single layer: Tight-binding approach

Graphene is made out of carbon atoms arranged in
hexagonal structure, as shown in Fig. 2. The structure
can be seen as a triangular lattice with a basis of two
atoms per unit cell. The lattice vectors can be written as

a1 =
a
2

!3,%3", a2 =
a
2

!3,− %3" , !1"

where a&1.42 Å is the carbon-carbon distance. The
reciprocal-lattice vectors are given by

b1 =
2!

3a
!1,%3", b2 =

2!

3a
!1,− %3" . !2"

Of particular importance for the physics of graphene are
the two points K and K! at the corners of the graphene
Brillouin zone !BZ". These are named Dirac points for
reasons that will become clear later. Their positions in
momentum space are given by

K = '2!

3a
,

2!

3%3a
(, K! = '2!

3a
,−

2!

3%3a
( . !3"

The three nearest-neighbor vectors in real space are
given by

!1 =
a
2

!1,%3" !2 =
a
2

!1,− %3" "3 = − a!1,0" !4"

while the six second-nearest neighbors are located at
"1!= ±a1, "2!= ±a2, "3!= ± !a2−a1".

The tight-binding Hamiltonian for electrons in
graphene considering that electrons can hop to both
nearest- and next-nearest-neighbor atoms has the form
!we use units such that #=1"

H = − t )
*i,j+,$

!a$,i
† b$,j + H.c."

− t! )
**i,j++,$

!a$,i
† a$,j + b$,i

† b$,j + H.c." , !5"

where ai,$ !ai,$
† " annihilates !creates" an electron with

spin $ !$= ↑ , ↓ " on site Ri on sublattice A !an equiva-
lent definition is used for sublattice B", t!&2.8 eV" is the
nearest-neighbor hopping energy !hopping between dif-
ferent sublattices", and t! is the next nearest-neighbor
hopping energy1 !hopping in the same sublattice". The
energy bands derived from this Hamiltonian have the
form !Wallace, 1947"

E±!k" = ± t%3 + f!k" − t!f!k" ,

1The value of t! is not well known but ab initio calculations
!Reich et al., 2002" find 0.02t% t!%0.2t depending on the tight-
binding parametrization. These calculations also include the
effect of a third-nearest-neighbors hopping, which has a value
of around 0.07 eV. A tight-binding fit to cyclotron resonance
experiments !Deacon et al., 2007" finds t!&0.1 eV.
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FIG. 2. !Color online" Honeycomb lattice and its Brillouin
zone. Left: lattice structure of graphene, made out of two in-
terpenetrating triangular lattices !a1 and a2 are the lattice unit
vectors, and "i, i=1,2 ,3 are the nearest-neighbor vectors".
Right: corresponding Brillouin zone. The Dirac cones are lo-
cated at the K and K! points.
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f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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t = 2.8 eV, t0 = �0.2t

k = K+ q

E±(q) ⇡ 3t0 ± vF |q|

Dirac point

‣ adjust Fermi level by chemical potential → doping 

K’
K

Castro Neto et al, Rev. Mod. Phys. 81, 109 (2009)

‣ e.g. from ab initio calculations:



Dirac fermions in undoped graphene

• Expand operators in Hamiltonian around Fermi level → K, K’ points	



‣ 2D massless Dirac equation (around K point):

E(k)

kx

ky
+

-

Dirac cone

include K’ point 

➡ two copies of massless Dirac-like Hamiltonian

• Unprecedented phenomena in condensed matter:	



• half integer quantum Hall effect	



• Klein paradox and suppression of backscattering

�ivF~� ·r (~r) = E (~r)

‣ near Dirac point electrons have well-defined chirality

Castro Neto et al, Rev. Mod. Phys. 81, 109 (2009)
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‣ van-Hove singularities @ finite doping → logarithmic divergence of 
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale ⇤

c

⇠ T

c

as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), ⇤

c

drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di↵erent band structure param-
eters a↵ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di↵erent SC phases responds to di↵erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di↵erent many-body
states and possible phase transitions between them.

Model. We consider the ⇡ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:

H0 =
h
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X
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where n =
P
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n
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c†
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c
i,�

, and c†
i,�

denotes the
electron annihilation operator of spin � =", # at site i.

(a)

FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di↵erent sections of
the Fermi surface for Q = (0, 2⇡/

p
3), (⇡,⇡/

p
3), and

(⇡,�⇡/
p
3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a↵ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]

Hint = U0

X

i

n
i,"ni,# +

1

2
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X
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n
i,�

n
j,�

0

+
1

2
U2

X

hhi,jii,�,�0

n
i,�

n
j,�

0 , (2)

where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-

energy dispersion

en
er

gy
/e

V

hopping parameter as vF!106 ms−1 and t!3 eV, respec-
tively. Experimental observation of the "n dependence
on the cyclotron mass provides evidence for the exis-
tence of massless Dirac quasiparticles in graphene #No-
voselov, Geim, Morozov, et al., 2005; Zhang et al., 2005;
Deacon et al., 2007; Jiang, Henriksen, Tung, et al.,
2007$—the usual parabolic #Schrödinger$ dispersion im-
plies a constant cyclotron mass.

2. Density of states

The density of states per unit cell, derived from Eq.
#5$, is given in Fig. 5 for both t!=0 and t!!0, showing in
both cases semimetallic behavior #Wallace, 1947; Bena
and Kivelson, 2005$. For t!=0, it is possible to derive an
analytical expression for the density of states per unit
cell, which has the form #Hobson and Nierenberg, 1953$

!#E$ =
4

"2

%E%
t2

1
"Z0

F&"

2
,"Z1

Z0
' ,

Z0 = (&1 + )E
t
)'2

−
*#E/t$2 − 1+2

4
, − t # E # t

4)E
t
) , − 3t # E # − t ∨ t # E # 3t ,,

Z1 = (4)E
t
) , − t # E # t

&1 + )E
t
)'2

−
*#E/t$2 − 1+2

4
, − 3t # E # − t ∨ t # E # 3t ,, #14$

where F#" /2 ,x$ is the complete elliptic integral of the
first kind. Close to the Dirac point, the dispersion is ap-
proximated by Eq. #7$ and the density of states per unit
cell is given by #with a degeneracy of 4 included$

!#E$ =
2Ac

"

%E%
vF

2 , #15$

where Ac is the unit cell area given by Ac=3"3a2 /2. It is
worth noting that the density of states for graphene is
different from the density of states of carbon nanotubes
#Saito et al., 1992a, 1992b$. The latter shows 1/"E singu-
larities due to the 1D nature of their electronic spec-
trum, which occurs due to the quantization of the mo-
mentum in the direction perpendicular to the tube axis.
From this perspective, graphene nanoribbons, which
also have momentum quantization perpendicular to the
ribbon length, have properties similar to carbon nano-
tubes.

B. Dirac fermions

We consider the Hamiltonian #5$ with t!=0 and the
Fourier transform of the electron operators,

an =
1

"Nc
-
k

e−ik·Rna#k$ , #16$

where Nc is the number of unit cells. Using this transfor-
mation, we write the field an as a sum of two terms,
coming from expanding the Fourier sum around K! and
K. This produces an approximation for the representa-
tion of the field an as a sum of two new fields, written as

an . e−iK·Rna1,n + e−iK!·Rna2,n,

bn . e−iK·Rnb1,n + e−iK!·Rnb2,n, #17$
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FIG. 5. Density of states per unit cell as a function of energy
#in units of t$ computed from the energy dispersion #5$, t!
=0.2t #top$ and t!=0 #bottom$. Also shown is a zoom-in of the
density of states close to the neutrality point of one electron
per site. For the case t!=0, the electron-hole nature of the
spectrum is apparent and the density of states close to the
neutrality point can be approximated by !#$$% %$%.
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale ⇤

c

⇠ T

c

as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), ⇤

c

drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di↵erent band structure param-
eters a↵ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di↵erent SC phases responds to di↵erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di↵erent many-body
states and possible phase transitions between them.

Model. We consider the ⇡ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:
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FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di↵erent sections of
the Fermi surface for Q = (0, 2⇡/

p
3), (⇡,⇡/
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3), and
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3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a↵ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]
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where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-
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hopping parameter as vF!106 ms−1 and t!3 eV, respec-
tively. Experimental observation of the "n dependence
on the cyclotron mass provides evidence for the exis-
tence of massless Dirac quasiparticles in graphene #No-
voselov, Geim, Morozov, et al., 2005; Zhang et al., 2005;
Deacon et al., 2007; Jiang, Henriksen, Tung, et al.,
2007$—the usual parabolic #Schrödinger$ dispersion im-
plies a constant cyclotron mass.

2. Density of states

The density of states per unit cell, derived from Eq.
#5$, is given in Fig. 5 for both t!=0 and t!!0, showing in
both cases semimetallic behavior #Wallace, 1947; Bena
and Kivelson, 2005$. For t!=0, it is possible to derive an
analytical expression for the density of states per unit
cell, which has the form #Hobson and Nierenberg, 1953$
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where F#" /2 ,x$ is the complete elliptic integral of the
first kind. Close to the Dirac point, the dispersion is ap-
proximated by Eq. #7$ and the density of states per unit
cell is given by #with a degeneracy of 4 included$
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where Ac is the unit cell area given by Ac=3"3a2 /2. It is
worth noting that the density of states for graphene is
different from the density of states of carbon nanotubes
#Saito et al., 1992a, 1992b$. The latter shows 1/"E singu-
larities due to the 1D nature of their electronic spec-
trum, which occurs due to the quantization of the mo-
mentum in the direction perpendicular to the tube axis.
From this perspective, graphene nanoribbons, which
also have momentum quantization perpendicular to the
ribbon length, have properties similar to carbon nano-
tubes.

B. Dirac fermions

We consider the Hamiltonian #5$ with t!=0 and the
Fourier transform of the electron operators,

an =
1

"Nc
-
k

e−ik·Rna#k$ , #16$

where Nc is the number of unit cells. Using this transfor-
mation, we write the field an as a sum of two terms,
coming from expanding the Fourier sum around K! and
K. This produces an approximation for the representa-
tion of the field an as a sum of two new fields, written as

an . e−iK·Rna1,n + e−iK!·Rna2,n,

bn . e−iK·Rnb1,n + e−iK!·Rnb2,n, #17$
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per site. For the case t!=0, the electron-hole nature of the
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FIG. 1: Kohn Luttinger mechanism of the pairing. The irre-
ducible pairing interaction is the sum of the Coulomb inter-
action, which includes all regular contribution from screen-
ing (U(q), represented by a dashed line), and non-analytic
terms, which appear at second order in U(q). Kohn and Lut-
tinger demonstrated that for rotationally isotropic systems,
the partial components of the irreducible pairing interaction
are attractive for arbitrary U(q) for large values of the angular
momentum l, at least for odd l.

butions to partial components of the irreducible interac-
tion from 2k

F

scattering scale as 1/l4 due to the non-
analyticity of the 2k

F

screening (this is the same non-
analyticity which gives rise to Friedel oscillations). At the
same time, partial components of analytic U(q) behave
at large l as e�l, i.e., are much smaller. As a result, even
though the KL contribution is second order in U , it over-
whelms the direct first-order interaction term in channels
with large enough l. KL explicitly computed [2,10] the
prefactor for 1/l4 term and found that it generally de-
pends on the parity of l. They found that the interac-
tion in channels with odd l is attractive no matter what
is the form of U(q). For the highly-screened Hubbard
interaction, for which U(0) = U(2k

F

) = U , the prefac-
tor is attractive for both even and odd l. As a result,
any generic rotationally-invariant system with repulsive
Coulomb interaction is unstable against pairing in chan-
nels with su�ciently large l. The pairing will be into
a channel which has the largest attractive component.
The situation away from the asymptotic large l limit is
less certain as analytic and non-analytic contributions to
the irreducible pairing interaction are of the same order.
However, one can make progress if the bare interaction
U(q) is weak, by doing perturbation theory in weak in-
teractions. For momentum-independent U(q) = U and
an isotropic system, the KL mechanism generates at-
traction in all channels down to l = 1, with the l = 1
channel having the strongest attraction [14,15]. For
momentum-dependent interaction, U(q) itself has com-
ponents for all l and whether the second-order KL con-
tribution can overwhelm the bare interaction depends on
the details [4,16,17].

The situation in lattice systems is similar but not iden-
tical to that in isotropic systems. Namely, there is only
a discrete set of orthogonal channels imposed by a spe-
cific lattice symmetry. (For 2D systems with C4 lattice
symmetry there are four one-dimensional channels A1g,
B1g, B2g, and A2g, and one two-dimensional E

g

channel).

M3#

M2# M1#

M3#

M2#M1#

FIG. 2: Fermi surface (blue lines) for fermions on a hon-
eycomb lattice at Van-Hove doping (⌫ = 3/8 or 5/8, where
⌫ = 1/2 corresponds to half-filling, where the fermionic spec-
trum has Dirac points). For nearest-neighbor hopping, the
Fermi surface consists of parallel pieces (nesting). At the end
point of parallel pieces the density of states diverges (van
Hove points M1,M2, and M3). Thin solid lines represent the
boundaries of the Brillouin zone.

Each channel has an infinite set of eigenfunctions, which,
however, are not orthogonal to each other, i.e., the no-
tation of a single“large l” channel no longer exists. The
leading eigenfunctions in each channel can be formally as-
sociated with s�wave (A1g), p�wave (E

g

), d�wave (B1g

and B1g) etc, however the ”higher-momentum” eigen-
functions have the same lattice symmetry as a leading
component in one of the channels and just fall into one of
orthogonal subsets. (For a detailed discussion of hexago-
nal lattice representations and its association with super-
conducting orders see e.g. Ref. 18. There is an infinite
number of orthogonal linear combinations of eigenfunc-
tions in each subset, hence an infinite number of eigen-
values, and for superconductivity only one of eigenvalues
needs to be attractive. However, there is no generic con-
dition that there must be attractive channels, and, more-
over, even if some combinations of eigenfunctions are at-
tractive, there is no condition like in the isotropic case at
large l, that the bare interaction U(q) has to be vanish-
ingly small in one of these channels. All this makes the
analysis of the pairing in lattice systems more involved
than in the isotropic case.

There are two ways to proceed and we explore both.
First, in a system with a generic FS (FS) (i.e., the one
without nesting and/or special points where the den-
sity of state diverges), one can apply perturbation the-
ory and study KL-type superconductivity for a generic
U(r). For 2D systems on a tetragonal lattice, such analy-
sis has been performed both analytically and numerically
in Refs.[16,17] (see also Ref. 19). Here we analyze KL su-
perconductivity analytically for systems on a hexagonal
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ducible pairing interaction is the sum of the Coulomb inter-
action, which includes all regular contribution from screen-
ing (U(q), represented by a dashed line), and non-analytic
terms, which appear at second order in U(q). Kohn and Lut-
tinger demonstrated that for rotationally isotropic systems,
the partial components of the irreducible pairing interaction
are attractive for arbitrary U(q) for large values of the angular
momentum l, at least for odd l.

butions to partial components of the irreducible interac-
tion from 2k

F

scattering scale as 1/l4 due to the non-
analyticity of the 2k

F

screening (this is the same non-
analyticity which gives rise to Friedel oscillations). At the
same time, partial components of analytic U(q) behave
at large l as e�l, i.e., are much smaller. As a result, even
though the KL contribution is second order in U , it over-
whelms the direct first-order interaction term in channels
with large enough l. KL explicitly computed [2,10] the
prefactor for 1/l4 term and found that it generally de-
pends on the parity of l. They found that the interac-
tion in channels with odd l is attractive no matter what
is the form of U(q). For the highly-screened Hubbard
interaction, for which U(0) = U(2k

F

) = U , the prefac-
tor is attractive for both even and odd l. As a result,
any generic rotationally-invariant system with repulsive
Coulomb interaction is unstable against pairing in chan-
nels with su�ciently large l. The pairing will be into
a channel which has the largest attractive component.
The situation away from the asymptotic large l limit is
less certain as analytic and non-analytic contributions to
the irreducible pairing interaction are of the same order.
However, one can make progress if the bare interaction
U(q) is weak, by doing perturbation theory in weak in-
teractions. For momentum-independent U(q) = U and
an isotropic system, the KL mechanism generates at-
traction in all channels down to l = 1, with the l = 1
channel having the strongest attraction [14,15]. For
momentum-dependent interaction, U(q) itself has com-
ponents for all l and whether the second-order KL con-
tribution can overwhelm the bare interaction depends on
the details [4,16,17].
The situation in lattice systems is similar but not iden-

tical to that in isotropic systems. Namely, there is only
a discrete set of orthogonal channels imposed by a spe-
cific lattice symmetry. (For 2D systems with C4 lattice
symmetry there are four one-dimensional channels A1g,
B1g, B2g, and A2g, and one two-dimensional E

g

channel).

M3#

M2# M1#

M3#
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FIG. 2: Fermi surface (blue lines) for fermions on a hon-
eycomb lattice at Van-Hove doping (⌫ = 3/8 or 5/8, where
⌫ = 1/2 corresponds to half-filling, where the fermionic spec-
trum has Dirac points). For nearest-neighbor hopping, the
Fermi surface consists of parallel pieces (nesting). At the end
point of parallel pieces the density of states diverges (van
Hove points M1,M2, and M3). Thin solid lines represent the
boundaries of the Brillouin zone.

Each channel has an infinite set of eigenfunctions, which,
however, are not orthogonal to each other, i.e., the no-
tation of a single“large l” channel no longer exists. The
leading eigenfunctions in each channel can be formally as-
sociated with s�wave (A1g), p�wave (E

g

), d�wave (B1g

and B1g) etc, however the ”higher-momentum” eigen-
functions have the same lattice symmetry as a leading
component in one of the channels and just fall into one of
orthogonal subsets. (For a detailed discussion of hexago-
nal lattice representations and its association with super-
conducting orders see e.g. Ref. 18. There is an infinite
number of orthogonal linear combinations of eigenfunc-
tions in each subset, hence an infinite number of eigen-
values, and for superconductivity only one of eigenvalues
needs to be attractive. However, there is no generic con-
dition that there must be attractive channels, and, more-
over, even if some combinations of eigenfunctions are at-
tractive, there is no condition like in the isotropic case at
large l, that the bare interaction U(q) has to be vanish-
ingly small in one of these channels. All this makes the
analysis of the pairing in lattice systems more involved
than in the isotropic case.

There are two ways to proceed and we explore both.
First, in a system with a generic FS (FS) (i.e., the one
without nesting and/or special points where the den-
sity of state diverges), one can apply perturbation the-
ory and study KL-type superconductivity for a generic
U(r). For 2D systems on a tetragonal lattice, such analy-
sis has been performed both analytically and numerically
in Refs.[16,17] (see also Ref. 19). Here we analyze KL su-
perconductivity analytically for systems on a hexagonal
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‣ Dirac fermions	
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Interactions & phase transitions

• Undoped graphene → interactions can induce phase transitions: 

✴Dirac fermions have vanishing DOS at Fermi level	



✴Stoner-type criterion → critical interaction strength required	



✴Experimental data: Graphene below critical strength U

V1

SM

staggered density

AFM

Uc

V1,c

• Graphene @ VHS → interactions can induce phase transitions: 

✴nesting: ph-channel diverges @ low T	



✴also: pp-channel diverges @ low T
➡ competing orders

Wehling et al, Phys. Rev. Lett. 106, 236805 (2011)
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Symmetries & Fierz transformations

• Minimal description of i.a. electrons in graphene @ low energies?	



• Symmetries of continuum interacting theory?	



• What kinds of order expected? Nature of phase transitions?

• Start with linearized non-interacting Lagrangian for Dirac electrons:	



• Interactions (quartic, local,… and spinless):
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FIG. 1: Two axis of symmetry of the low-energy theory of
graphene, in real space. The Dirac points in this coordinate
frame are at ±K⃗ = (1, 0)(4π/3a), i. e. along the A-axis.

In the rest of the introduction we give a preview of our
main results.

The simplest prototypical system that exhibits the
physics of interacting Dirac fermions which we seek to
understand is the collection of spinless electrons inter-
acting via short-range interactions, at half-filling. For
present purposes an interaction may be considered as
”short-ranged” if its Fourier transform at the vanishing
wavevector is finite.18 The least irrelevant quartic terms
one can add to the non-interacting Dirac Lagrangian will
then be local in space-time, and of course quartic in terms
of the four-component Dirac fields that describe the elec-
tronic modes near the two inequivalent Dirac points at
wavevectors ±K⃗ at the edges of the Brillouin zone. The
most general local quartic term in the Lagrangian would
be of the form

Lint = (Ψ†(x⃗, τ)M1Ψ(x⃗, τ))(Ψ†(x⃗, τ)M2Ψ(x⃗, τ)), (1)

where M1 and M2 are four-dimensional Hermitian matri-
ces. The symmetry alone, however, immediately drasti-
cally reduces the number of independent couplings from
the apparent 136 to just fifteen. Although the point
group of the honeycomb lattice is C6v, the exact spatial
discrete symmetry of the Lagrangian is only the dihedral
group D2, or the vierergruppe, which consists of the re-
flections through the two coordinate axis shown in Fig.
1, and the inversion through the origin. Such a small
symmetry results from the very choice of two inequiva-
lent Dirac points out of six corners of the Brillouin zone,
which reduces the symmetry to the simple exchange of
the two sublattices (reflection around A axis), the ex-
change of Dirac points (reflection around B axis), and
their product (the inversion through the origin). D2, the
time-reversal, and the translational invariance are shown
to leave fifteen possible different local quartic terms in
the Lagrangian.

Fortunately, not all of these still numerous quartic
terms are independent, and there are linear constraints
between them implied by the algebraic Fierz identities.19

The Fierz transformations are rewritings of a given quar-
tic term in terms of others, and we provide the general
formalism for determining the number and the type of

independent quartic couplings of a given symmetry. For
the case at hand we find that spinless electrons interact-
ing with short-range interactions on honeycomb lattice
are in fact described by only six independent local quar-
tic terms. The inclusion of electron spin would double
this number to twelve.

The linearized noninteracting Lagrangian for Dirac
electrons,

L0 = Ψ̄(x⃗, τ)γµ∂µΨ(x⃗, τ) (2)

as well-known, exhibits the Lorentz and the global
SUc(2) (”chiral”) symmetry. The latter, generated by
{γ3, γ5, γ35}, with γ35 = −iγ3γ5, is nothing but the ”rota-
tion” of the ”pseudospin”, or ”valley”, corresponding to
two inequivalent Dirac points.20 A general quartic term
allowed by the lattice symmetry, on the other hand, has
a much smaller symmetry, as already mentioned. Nev-
ertheless, we will argue that near the metal-insulator
quantum critical points, all, or nearly all of the larger
symmetry possessed by the non-interacting part of the
Lagrangian gets restored. This conclusion is supported
by the, admittedly uncontrolled, but nevertheless quite
informative one-loop calculation. First, we find three dis-
tinct critical points in the theory, all of which have not
only the rotational, but the full Lorentz-symmetric form.
This immediately implies that the dynamical critical ex-
ponent is always z = 1. This is quite remarkable in light
of the fact that the microscopic theory is not even rota-
tionally invariant, and that the critical points in question
are purely short-ranged.21 The fact that z = 1 has im-
portant implications for several key physical observables
near the critical point, as we discuss shortly. Further-
more, we find that two out of three critical points in the
theory exhibit a full chiral symmetry as well. We iden-
tify the three fixed points in the theory as corresponding
to three possible order parameters, or ”masses” that de-
velop in the insulating phase at strong coupling.

1) ⟨Ψ̄γ35Ψ⟩, which preserves chiral, but breaks time-
reversal symmetry. Microscopically, this order parameter
may be understood as a specific pattern of circulating
currents, as discussed in the past.22

2) ⟨Ψ̄Ψ⟩, which preserves the time-reversal symmetry,
and the single chiral generator γ35, which will be shown
to correspond to translational invariance. This order pa-
rameter describes a finite staggered density, i. e. the
difference between the average densities on the two sub-
lattices of the honeycomb lattice.23

3) ⟨Ψ̄(γ3 cosα + γ5 sin α)Ψ⟩, which preserves the time-
reversal, but breaks translational invariance (γ35). This
order parameter can be understood as the specific
”Kekule” modulation of the nearest-neighbor hopping
integrals.24

In one-loop calculation all three critical points have the
same correlation length exponent ν = 1, which we believe
is an artifact of the quadratic approximation. The result
that the dynamical critical exponent z = 1 is, on the
other hand, possibly exact. If we denote the relevant
interaction parameter with V , the Fermi velocity near

Herbut, Phys. Rev. Lett. 97, 146401 (2006)	
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FIG. 1: Two axis of symmetry of the low-energy theory of
graphene, in real space. The Dirac points in this coordinate
frame are at ±K⃗ = (1, 0)(4π/3a), i. e. along the A-axis.

In the rest of the introduction we give a preview of our
main results.

The simplest prototypical system that exhibits the
physics of interacting Dirac fermions which we seek to
understand is the collection of spinless electrons inter-
acting via short-range interactions, at half-filling. For
present purposes an interaction may be considered as
”short-ranged” if its Fourier transform at the vanishing
wavevector is finite.18 The least irrelevant quartic terms
one can add to the non-interacting Dirac Lagrangian will
then be local in space-time, and of course quartic in terms
of the four-component Dirac fields that describe the elec-
tronic modes near the two inequivalent Dirac points at
wavevectors ±K⃗ at the edges of the Brillouin zone. The
most general local quartic term in the Lagrangian would
be of the form

Lint = (Ψ†(x⃗, τ)M1Ψ(x⃗, τ))(Ψ†(x⃗, τ)M2Ψ(x⃗, τ)), (1)

where M1 and M2 are four-dimensional Hermitian matri-
ces. The symmetry alone, however, immediately drasti-
cally reduces the number of independent couplings from
the apparent 136 to just fifteen. Although the point
group of the honeycomb lattice is C6v, the exact spatial
discrete symmetry of the Lagrangian is only the dihedral
group D2, or the vierergruppe, which consists of the re-
flections through the two coordinate axis shown in Fig.
1, and the inversion through the origin. Such a small
symmetry results from the very choice of two inequiva-
lent Dirac points out of six corners of the Brillouin zone,
which reduces the symmetry to the simple exchange of
the two sublattices (reflection around A axis), the ex-
change of Dirac points (reflection around B axis), and
their product (the inversion through the origin). D2, the
time-reversal, and the translational invariance are shown
to leave fifteen possible different local quartic terms in
the Lagrangian.

Fortunately, not all of these still numerous quartic
terms are independent, and there are linear constraints
between them implied by the algebraic Fierz identities.19

The Fierz transformations are rewritings of a given quar-
tic term in terms of others, and we provide the general
formalism for determining the number and the type of

independent quartic couplings of a given symmetry. For
the case at hand we find that spinless electrons interact-
ing with short-range interactions on honeycomb lattice
are in fact described by only six independent local quar-
tic terms. The inclusion of electron spin would double
this number to twelve.

The linearized noninteracting Lagrangian for Dirac
electrons,

L0 = Ψ̄(x⃗, τ)γµ∂µΨ(x⃗, τ) (2)

as well-known, exhibits the Lorentz and the global
SUc(2) (”chiral”) symmetry. The latter, generated by
{γ3, γ5, γ35}, with γ35 = −iγ3γ5, is nothing but the ”rota-
tion” of the ”pseudospin”, or ”valley”, corresponding to
two inequivalent Dirac points.20 A general quartic term
allowed by the lattice symmetry, on the other hand, has
a much smaller symmetry, as already mentioned. Nev-
ertheless, we will argue that near the metal-insulator
quantum critical points, all, or nearly all of the larger
symmetry possessed by the non-interacting part of the
Lagrangian gets restored. This conclusion is supported
by the, admittedly uncontrolled, but nevertheless quite
informative one-loop calculation. First, we find three dis-
tinct critical points in the theory, all of which have not
only the rotational, but the full Lorentz-symmetric form.
This immediately implies that the dynamical critical ex-
ponent is always z = 1. This is quite remarkable in light
of the fact that the microscopic theory is not even rota-
tionally invariant, and that the critical points in question
are purely short-ranged.21 The fact that z = 1 has im-
portant implications for several key physical observables
near the critical point, as we discuss shortly. Further-
more, we find that two out of three critical points in the
theory exhibit a full chiral symmetry as well. We iden-
tify the three fixed points in the theory as corresponding
to three possible order parameters, or ”masses” that de-
velop in the insulating phase at strong coupling.

1) ⟨Ψ̄γ35Ψ⟩, which preserves chiral, but breaks time-
reversal symmetry. Microscopically, this order parameter
may be understood as a specific pattern of circulating
currents, as discussed in the past.22

2) ⟨Ψ̄Ψ⟩, which preserves the time-reversal symmetry,
and the single chiral generator γ35, which will be shown
to correspond to translational invariance. This order pa-
rameter describes a finite staggered density, i. e. the
difference between the average densities on the two sub-
lattices of the honeycomb lattice.23

3) ⟨Ψ̄(γ3 cosα + γ5 sin α)Ψ⟩, which preserves the time-
reversal, but breaks translational invariance (γ35). This
order parameter can be understood as the specific
”Kekule” modulation of the nearest-neighbor hopping
integrals.24

In one-loop calculation all three critical points have the
same correlation length exponent ν = 1, which we believe
is an artifact of the quadratic approximation. The result
that the dynamical critical exponent z = 1 is, on the
other hand, possibly exact. If we denote the relevant
interaction parameter with V , the Fermi velocity near

4d hermitian matrices



Symmetries & Fierz transformations

• Minimal description of i.a. electrons in graphene @ low energies?	



• Symmetries of continuum interacting theory?	



• What kinds of order expected? Nature of phase transitions?

• Start with linearized non-interacting Lagrangian for Dirac electrons:	



• Interactions (quartic, local,… and spinless):

2

B

A

FIG. 1: Two axis of symmetry of the low-energy theory of
graphene, in real space. The Dirac points in this coordinate
frame are at ±K⃗ = (1, 0)(4π/3a), i. e. along the A-axis.

In the rest of the introduction we give a preview of our
main results.

The simplest prototypical system that exhibits the
physics of interacting Dirac fermions which we seek to
understand is the collection of spinless electrons inter-
acting via short-range interactions, at half-filling. For
present purposes an interaction may be considered as
”short-ranged” if its Fourier transform at the vanishing
wavevector is finite.18 The least irrelevant quartic terms
one can add to the non-interacting Dirac Lagrangian will
then be local in space-time, and of course quartic in terms
of the four-component Dirac fields that describe the elec-
tronic modes near the two inequivalent Dirac points at
wavevectors ±K⃗ at the edges of the Brillouin zone. The
most general local quartic term in the Lagrangian would
be of the form

Lint = (Ψ†(x⃗, τ)M1Ψ(x⃗, τ))(Ψ†(x⃗, τ)M2Ψ(x⃗, τ)), (1)

where M1 and M2 are four-dimensional Hermitian matri-
ces. The symmetry alone, however, immediately drasti-
cally reduces the number of independent couplings from
the apparent 136 to just fifteen. Although the point
group of the honeycomb lattice is C6v, the exact spatial
discrete symmetry of the Lagrangian is only the dihedral
group D2, or the vierergruppe, which consists of the re-
flections through the two coordinate axis shown in Fig.
1, and the inversion through the origin. Such a small
symmetry results from the very choice of two inequiva-
lent Dirac points out of six corners of the Brillouin zone,
which reduces the symmetry to the simple exchange of
the two sublattices (reflection around A axis), the ex-
change of Dirac points (reflection around B axis), and
their product (the inversion through the origin). D2, the
time-reversal, and the translational invariance are shown
to leave fifteen possible different local quartic terms in
the Lagrangian.

Fortunately, not all of these still numerous quartic
terms are independent, and there are linear constraints
between them implied by the algebraic Fierz identities.19

The Fierz transformations are rewritings of a given quar-
tic term in terms of others, and we provide the general
formalism for determining the number and the type of

independent quartic couplings of a given symmetry. For
the case at hand we find that spinless electrons interact-
ing with short-range interactions on honeycomb lattice
are in fact described by only six independent local quar-
tic terms. The inclusion of electron spin would double
this number to twelve.

The linearized noninteracting Lagrangian for Dirac
electrons,

L0 = Ψ̄(x⃗, τ)γµ∂µΨ(x⃗, τ) (2)

as well-known, exhibits the Lorentz and the global
SUc(2) (”chiral”) symmetry. The latter, generated by
{γ3, γ5, γ35}, with γ35 = −iγ3γ5, is nothing but the ”rota-
tion” of the ”pseudospin”, or ”valley”, corresponding to
two inequivalent Dirac points.20 A general quartic term
allowed by the lattice symmetry, on the other hand, has
a much smaller symmetry, as already mentioned. Nev-
ertheless, we will argue that near the metal-insulator
quantum critical points, all, or nearly all of the larger
symmetry possessed by the non-interacting part of the
Lagrangian gets restored. This conclusion is supported
by the, admittedly uncontrolled, but nevertheless quite
informative one-loop calculation. First, we find three dis-
tinct critical points in the theory, all of which have not
only the rotational, but the full Lorentz-symmetric form.
This immediately implies that the dynamical critical ex-
ponent is always z = 1. This is quite remarkable in light
of the fact that the microscopic theory is not even rota-
tionally invariant, and that the critical points in question
are purely short-ranged.21 The fact that z = 1 has im-
portant implications for several key physical observables
near the critical point, as we discuss shortly. Further-
more, we find that two out of three critical points in the
theory exhibit a full chiral symmetry as well. We iden-
tify the three fixed points in the theory as corresponding
to three possible order parameters, or ”masses” that de-
velop in the insulating phase at strong coupling.

1) ⟨Ψ̄γ35Ψ⟩, which preserves chiral, but breaks time-
reversal symmetry. Microscopically, this order parameter
may be understood as a specific pattern of circulating
currents, as discussed in the past.22

2) ⟨Ψ̄Ψ⟩, which preserves the time-reversal symmetry,
and the single chiral generator γ35, which will be shown
to correspond to translational invariance. This order pa-
rameter describes a finite staggered density, i. e. the
difference between the average densities on the two sub-
lattices of the honeycomb lattice.23

3) ⟨Ψ̄(γ3 cosα + γ5 sin α)Ψ⟩, which preserves the time-
reversal, but breaks translational invariance (γ35). This
order parameter can be understood as the specific
”Kekule” modulation of the nearest-neighbor hopping
integrals.24

In one-loop calculation all three critical points have the
same correlation length exponent ν = 1, which we believe
is an artifact of the quadratic approximation. The result
that the dynamical critical exponent z = 1 is, on the
other hand, possibly exact. If we denote the relevant
interaction parameter with V , the Fermi velocity near
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FIG. 1: Two axis of symmetry of the low-energy theory of
graphene, in real space. The Dirac points in this coordinate
frame are at ±K⃗ = (1, 0)(4π/3a), i. e. along the A-axis.

In the rest of the introduction we give a preview of our
main results.

The simplest prototypical system that exhibits the
physics of interacting Dirac fermions which we seek to
understand is the collection of spinless electrons inter-
acting via short-range interactions, at half-filling. For
present purposes an interaction may be considered as
”short-ranged” if its Fourier transform at the vanishing
wavevector is finite.18 The least irrelevant quartic terms
one can add to the non-interacting Dirac Lagrangian will
then be local in space-time, and of course quartic in terms
of the four-component Dirac fields that describe the elec-
tronic modes near the two inequivalent Dirac points at
wavevectors ±K⃗ at the edges of the Brillouin zone. The
most general local quartic term in the Lagrangian would
be of the form

Lint = (Ψ†(x⃗, τ)M1Ψ(x⃗, τ))(Ψ†(x⃗, τ)M2Ψ(x⃗, τ)), (1)

where M1 and M2 are four-dimensional Hermitian matri-
ces. The symmetry alone, however, immediately drasti-
cally reduces the number of independent couplings from
the apparent 136 to just fifteen. Although the point
group of the honeycomb lattice is C6v, the exact spatial
discrete symmetry of the Lagrangian is only the dihedral
group D2, or the vierergruppe, which consists of the re-
flections through the two coordinate axis shown in Fig.
1, and the inversion through the origin. Such a small
symmetry results from the very choice of two inequiva-
lent Dirac points out of six corners of the Brillouin zone,
which reduces the symmetry to the simple exchange of
the two sublattices (reflection around A axis), the ex-
change of Dirac points (reflection around B axis), and
their product (the inversion through the origin). D2, the
time-reversal, and the translational invariance are shown
to leave fifteen possible different local quartic terms in
the Lagrangian.

Fortunately, not all of these still numerous quartic
terms are independent, and there are linear constraints
between them implied by the algebraic Fierz identities.19

The Fierz transformations are rewritings of a given quar-
tic term in terms of others, and we provide the general
formalism for determining the number and the type of

independent quartic couplings of a given symmetry. For
the case at hand we find that spinless electrons interact-
ing with short-range interactions on honeycomb lattice
are in fact described by only six independent local quar-
tic terms. The inclusion of electron spin would double
this number to twelve.

The linearized noninteracting Lagrangian for Dirac
electrons,

L0 = Ψ̄(x⃗, τ)γµ∂µΨ(x⃗, τ) (2)

as well-known, exhibits the Lorentz and the global
SUc(2) (”chiral”) symmetry. The latter, generated by
{γ3, γ5, γ35}, with γ35 = −iγ3γ5, is nothing but the ”rota-
tion” of the ”pseudospin”, or ”valley”, corresponding to
two inequivalent Dirac points.20 A general quartic term
allowed by the lattice symmetry, on the other hand, has
a much smaller symmetry, as already mentioned. Nev-
ertheless, we will argue that near the metal-insulator
quantum critical points, all, or nearly all of the larger
symmetry possessed by the non-interacting part of the
Lagrangian gets restored. This conclusion is supported
by the, admittedly uncontrolled, but nevertheless quite
informative one-loop calculation. First, we find three dis-
tinct critical points in the theory, all of which have not
only the rotational, but the full Lorentz-symmetric form.
This immediately implies that the dynamical critical ex-
ponent is always z = 1. This is quite remarkable in light
of the fact that the microscopic theory is not even rota-
tionally invariant, and that the critical points in question
are purely short-ranged.21 The fact that z = 1 has im-
portant implications for several key physical observables
near the critical point, as we discuss shortly. Further-
more, we find that two out of three critical points in the
theory exhibit a full chiral symmetry as well. We iden-
tify the three fixed points in the theory as corresponding
to three possible order parameters, or ”masses” that de-
velop in the insulating phase at strong coupling.

1) ⟨Ψ̄γ35Ψ⟩, which preserves chiral, but breaks time-
reversal symmetry. Microscopically, this order parameter
may be understood as a specific pattern of circulating
currents, as discussed in the past.22

2) ⟨Ψ̄Ψ⟩, which preserves the time-reversal symmetry,
and the single chiral generator γ35, which will be shown
to correspond to translational invariance. This order pa-
rameter describes a finite staggered density, i. e. the
difference between the average densities on the two sub-
lattices of the honeycomb lattice.23

3) ⟨Ψ̄(γ3 cosα + γ5 sin α)Ψ⟩, which preserves the time-
reversal, but breaks translational invariance (γ35). This
order parameter can be understood as the specific
”Kekule” modulation of the nearest-neighbor hopping
integrals.24

In one-loop calculation all three critical points have the
same correlation length exponent ν = 1, which we believe
is an artifact of the quadratic approximation. The result
that the dynamical critical exponent z = 1 is, on the
other hand, possibly exact. If we denote the relevant
interaction parameter with V , the Fermi velocity near

4d hermitian matrices

➡ 136 independent couplings in spinless case!

• Honeycomb lattice symmetries help to reduce to 15 independent couplings	



• Further reduction by Fierz identities!

➡ 6 independent couplings in spinless case!



• Reduction of independent couplings can be pushed further	



‣ near quantum critical point additional symmetries from non-interacting theory restored…	



‣ minimal low-energy description of i.a. spinless honeycomb electrons:
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FIG. 2: The behavior of the the Fermi velocity(vF ), strength
of the quasiparticle pole (Z), and the gap (m) near the metal-
insulator transition.

the transition scales as

vF ∼ (Vc − V )ν(z−1) (3)

so the above value of z would simply imply that it stays
regular at the transition. This appears to be in agreement
with the picture of the transition as the opening of the
relativistic ”mass” in the spectrum. The mass-gap in the
insulating phase scales as usual25 as

m ∼ (V − Vc)
zν . (4)

The transition on the metallic side is manifested as van-
ishing of the residue of the quasiparticle pole26

Z ∼ (Vc − V )νηΨ . (5)

where we assumed z = 1. (A more general power-law is
discussed in the text.) At one-loop the fermion anoma-
lous dimension ηΨ vanishes, but in general it is a positive,
small, and critical-point-dependent number. The overall
picture of the metal-insulator transition that emerges is
presented in Fig. 2.

For graphene’s pz-orbitals well localized on carbon
sites, a further significant simplification takes place. All
the terms without the equal number of creation and an-
nihilation operators for each of the two sublattices must
vanish. Assuming again the emergent Lorentz symme-
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L = L0 + gD2(Ψ̄γ35Ψ)2 + gC1(Ψ̄Ψ)2. (6)
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sions. We discuss the internal consistency and the suf-
ficiency of this Lagrangian and some of the peculiarities
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The rest of the paper is organized as follows. We dis-
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the time-reversal symmetry of the interacting Lagrangian
as dictated by the microscopic Hamiltonian for the sys-
tem in the next section. In section III it is shown how
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number of coupling constants. We introduce the notion
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Lorentz and chiral symmetry with the quadratic term in
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alternative implementation of the renormalization group
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II. SYMMETRIES AND SHORT-RANGE
INTERACTIONS

A. Hamiltonian and the Lagrangian

As the simplest microscopic model that contains
the relevant physics we may consider the tight-binding
Hamiltonian on the graphene’s honeycomb lattice, de-
fined as

H0 = t̃
∑

A⃗,i

u†(A⃗)v(A⃗ + b⃗i) + H.c., (7)

where u and v are the electron annihilation operators
at two triangular sublattices of the honeycomb lattice.
Here, A⃗ denotes sites of the sublattice generated by
linear combinations of basis vectors a⃗1 = (

√
3,−1)a,

a⃗2 = (0, 1)a, whereas B⃗ = A⃗ + b⃗ are the sites on the

second sublattice, with b⃗ being b⃗1 = (1/
√

3, 1)a/2, b⃗2 =
(1/

√
3,−1)a/2, or b⃗3 = (−1/

√
3, 0)a, and a is the lattice

spacing.
Within the framework of the tight-binding model

the energy spectrum is doubly degenerate E(k⃗) =
±t̃|

∑

i exp[⃗k · b⃗i]|, and becomes linear and isotropic in
the vicinity of six Dirac points, at the edge of the Bril-
louin zone, among which only two, hereafter chosen to be
at ±K⃗ with K⃗ = (1, 1/

√
3)(2π/a

√
3), are inequivalent.

Retaining only the Fourier components in the vicinity
of these two inequivalent points, the quantum mechan-
ical action corresponding to H0 at low energies can be
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cept can be viewed as a specific implementation of Wil-
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integrating out all fluctuations at once, we divide the
functional integral into integrations over shells with mo-
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While the Wetterich equation (10) is an exact identity
for the evolution of �
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, it is generically di�cult to find
exact solutions. It is nevertheless perfectly possible to
use it to find very satisfying approximate solutions by
means of suitable systematic expansion schemes. Pertur-
bation theory constitutes one such expansion; however,
for the description of phase transitions nonperturbative
expansion schemes in terms of operator or vertex expan-
sions are often superior already at relatively low order of
the expansion. In particular, an expansion in terms of
the derivative has been shown to be highly suitable for
the study of critical phenomena in (2 + 1)-dimensional
fermion-boson systems, yielding accurate predictions for
the critical exponents.20–22,24,26,27 In the spirit of the
derivative expansion, we apply in this work the follow-
ing ansatz for the e↵ective average action:
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k

. For symmetry reasons, the scale-dependent ef-
fective bosonic potential U

k

has to be a function of the

order parameter field Z2 or SO(3)

➡ talk by L. Janssen

‣ quantify critical behaviour at quantum phase transition (Z2):

& have fun:

4

III. FUNCTIONAL RENORMALIZATION
GROUP

The functional renormalization group (FRG) approach
is an e�cient tool to compute the generating functional
of the one-particle irreducible correlation functions—the
e↵ective action �[�

a

, ,  ̄]53. For reviews on this rapidly
evolving method, applied to both condensed-matter as
well as high-energy physics, see Refs. 14,15,23,38–45. A
thorough and very pedagogical introduction can be found
in Ref. 46. The central object of the method is the scale-
dependent e↵ective average action �

k

[�
a

, ,  ̄], which
is essentially the Legendre transform of a regulator-
modified action

S 7! S +

Z
dDqdDp

(2⇡)2D


1

2
�

a

(�q)R(B)

ab,k

(q, p)�
b

(p)

+ ̄(q)R(F)

k

(q, p) (p)

�
, (9)

with the bosonic regulator R

(B)

k

(p, q) =
⇣
R

(B)

ab,k

⌘
(q, p),

which for any given momenta q, p is a 3 ⇥ 3 matrix in
the chiral Heisenberg case (a, b = 1, 2, 3) and a scalar
in the chiral Ising case (a, b ⌘ 0), respectively; and the

fermionic regulator R

(F)

k

(q, p), which is an 8 ⇥ 8 matrix
acting on spin and Dirac indices. Here, we have combined
the frequency and momentum integration into the inte-
gration over the relativistic D-momentum q

µ

= (!, ~q),
with space-time dimension D. In momentum space, the
regulators, introduced here integral kernels of linear op-
erators in field space, are usually taken to be diagonal,

i.e., R(B/F)

k

(p, q) = R

(B/F)

k

(q)�(p� q).
At finite scale k > 0, the regulator screens the IR fluc-

tuations with |q| ⌧ k in a mass-like fashion, ensuring
that only fast modes with momentum |q| & k give signif-

icant contributions to �
k

. The fermionic regulator R

(F)

k

is constructed in a way that the regulator modification
in Eq. (9) does not spoil the chiral symmetry. Besides a
sharp-cuto↵ regulator it is possible (and often very use-
ful) to employ smooth cuto↵ functions, which allow a
continuous suppression of slow modes. For k ! 0 the
regulator has to go to zero for all momenta, such that the
modifications in S vanish and the e↵ective average action
approaches the full quantum e↵ective action, �

k!0

= �.
We choose regulator functions which for k ! ⇤ are of the

order of the UV cuto↵ ⇤, R(B)

k!⇤(q) ⇠ ⇤2, R(F)

k!⇤(q) ⇠ ⇤.
Thus, in the UV all fluctuations are suppressed and �

k!⇤
becomes (up to normalization constants) the microscopic
action, �

k!⇤ ' S. The e↵ective average action thus
interpolates between the microscopic action in the UV
and the full quantum e↵ective action in the IR. The con-
cept can be viewed as a specific implementation of Wil-
son’s approach to the renormalization group: Instead of
integrating out all fluctuations at once, we divide the
functional integral into integrations over shells with mo-
mentum q 2 [k, k � �k] and subsequently successively
integrate momentum shell by momentum shell. �

k

is the

e↵ective action at an intermediate step 0  k  ⇤, where
the fluctuations in the functional integral with momen-
tum q 2 [k,⇤] are integrated out. The theory then is
solved, once we know the evolution of �

k

with respect to
the renormalization group time t = ln(k/⇤) from t = 0
(UV) to t ! �1 (IR). The evolution equation for �

k

has been computed by Wetterich47 and is given by the
functional identity

@

t

�
k

=
1

2
STr


@

t

R
k

⇣
�(2)
k

+R
k

⌘�1

�
, (10)

where R
k

:=

 
R

(B)
k 0 0

0 0 R

(F)
k

0 �R

(F)T
k 0

!
and �(2)

k

denotes the

second functional derivative of the e↵ective average ac-
tion with respect to the fields �

a

,  , and  ̄, i.e.,

�(2)(p, q) ⌘
�!
�

��(�p)T �k
 �
�

��(q)
, (11)

where we have used the collective field variable �(q) =✓
�a(q)

 (q)

¯

 (�q)

T

◆
. Note that both R

k

and �(2)
k

define linear

operators acting on the collective field, e.g., (R
k

�)(p) ⌘R
d

D
q

(2⇡)

D R
k

(p, q)�(q). STr runs over all internal degrees of

freedom (momentum, spin, sublattice, valley), as well as
field degrees of freedom. In the fermionic sector, it takes

an additional minus sign into account, STr
⇣

B ⇤ ⇤
⇤ F1 ⇤
⇤ ⇤ F2

⌘
:=

TrB � Tr
�
F1 ⇤
⇤ F2

�
.

While the Wetterich equation (10) is an exact identity
for the evolution of �

k

, it is generically di�cult to find
exact solutions. It is nevertheless perfectly possible to
use it to find very satisfying approximate solutions by
means of suitable systematic expansion schemes. Pertur-
bation theory constitutes one such expansion; however,
for the description of phase transitions nonperturbative
expansion schemes in terms of operator or vertex expan-
sions are often superior already at relatively low order of
the expansion. In particular, an expansion in terms of
the derivative has been shown to be highly suitable for
the study of critical phenomena in (2 + 1)-dimensional
fermion-boson systems, yielding accurate predictions for
the critical exponents.20–22,24,26,27 In the spirit of the
derivative expansion, we apply in this work the follow-
ing ansatz for the e↵ective average action:

�
k

=

Z
dDx


Z

 ,k

 ̄ (
2

⌦ �

µ

) @
µ

 � 1

2
Z

�,k

�

a

@

2

µ

�

a

+U

k

(⇢) + ḡ
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solved numerically.21 For criticality alone it is, however,
just as good, and technically much more convenient, to
employ a Taylor expansion around the potential’s mini-
mum at ⇢̃ = 0, as in Eq. (13). For our numerical results,
we truncate this expansion after the 6th order in ⇢̃, i.e.,
we neglect all interactions ⇠ �

14 and higher. The order
of the polynomial truncation is chosen such that an in-
clusion of higher-order terms changes our predictions for
the critical exponents only beyond the third digit. The
error introduced by truncating the e↵ective potential is
thus much smaller than the error we expect due to the
truncation of �

k

, Eq. (12). Our results for correlation-
length exponent ⌫ and anomalous dimensions ⌘

�

and ⌘

 

are shown in Figs. 1–3. For clarity, we have plotted only
the sharp-cuto↵ results, since the di↵erence to the linear-
regulator exponents is hardly visible within the given
resolution of these plots. Our numerical predictions in
D = 3 are given for both regulators in Table I for the
chiral Ising (S = 0) universality class and Table II for
the chiral Heisenberg (S = 2) universality class, respec-
tively. In Table II, we have also included the exponent
!, determining the leading correction to scaling, e.g., for
the correlation length ⇠ / |�|�⌫(1 + a±|�|!⌫ + O(�2)).
Since there does not seem to be any dangerously irrele-
vant coupling in the problem, we expect hyperscaling to
hold. Our predictions for the remaining exponents ↵, �,
�, and �, obtained by the usual relations,12 are given in
Table II, too.

VI. DISCUSSION

Due to the absence of an obvious small expansion
parameter in the strongly-coupled system for general
D 2 (2, 4), the truncation-induced error is hard to con-
trol. However, since the chiral Ising universality class is
by now fairly well-established it provides a useful test-
ing ground to check the reliability of our approximation.
Assuming similar performances in the two universality
classes, we can therewith estimate the accuracy of our
predictions in the chiral Heisenberg universality class.

A. Chiral Ising universality class

Within the 1/N
f

-expansion, the Gross-Neveu model
was solved in any dimension 2  D  4 up to two-loop or-
der, with the fermion anomalous dimension being known
even up to three-loop order.34,35 In D = 3 the critical
exponents read as

1/⌫ = 1� 8

3⇡

2
Nf

+ 4(632+27⇡

2
)

27⇡

4
Nf

2 = 1� 0.270

Nf
+ 1.366

Nf
2 , (42)

⌘

�

= 1� 16

3⇡

2
Nf

+ 4(304�27⇡

2
)

27⇡

4
Nf

2 = 1� 0.540

Nf
+ 0.057

Nf
2 , (43)

⌘

 

= 2

3⇡

2
Nf

+ 112

27⇡

4
Nf

2 + 94⇡

2
+216⇡

2
ln 2�2268⇣(3)�501

162⇡

6
Nf

3

= 0.068

Nf
+ 0.043

Nf
2 � 0.005

Nf
3 , (44)

TABLE I: Critical exponents in D = 3 for the transition into
the charge-density-wave state (chiral Ising universality class,
S = 0, with d�Nf = 8) from di↵erent methods. Functional
RG results (this work) in LPA’ approximation and by trun-
cating u(⇢̃) after 6th order in ⇢̃, both for sharp (Rsc

k ) and lin-
ear regulator (Rlin

k ). Previous FRG results without truncating
u(⇢̃). Pi,j(D) interpolates between ith-order (2+✏)-expansion
and jth-order (4� ✏)-expansion results, see Sec. VI.

1/⌫ ⌘� ⌘ 

FRG [LPA’, O(⇢̃6), Rlin
k ] 0.982 0.760 0.032

FRG [LPA’, O(⇢̃6), Rsc
k ] 0.978 0.767 0.033

FRG [LPA’, full u(⇢̃), Rlin
k ]21 0.982 0.756 0.032

1/Nf -expansion (2nd/3rd order)34,35 0.962⇤ 0.776 0.044

(2 + ✏)-expansion (3rd order)28 0.764 0.602 0.081

(4� ✏)-expansion (2nd order)13,33 1.055 0.695 0.065

Polynomial interpolation P2,2 0.995 0.753 0.034

Polynomial interpolation P3,2 0.949 0.716 0.041

Monte-Carlo simulations33† 1.00(4) 0.754(8) �
⇤
[1/1] Padé approximant, Eq. (51).

†
cubic-lattice model with smaller symmetry, sign problem

ignored.

50

with N

f

counting the number of four-component fermion
species. The exponents have also been computed up to
three-loop order within an expansion around the lower
critical dimension.28–30 For N

f

= 2 and D = 2 + ✏, one
obtains:

1/⌫ = ✏� 1

6

✏

2 � 5

72

✏

3 = ✏� 0.167✏2 � 0.069✏3, (45)

⌘

�

= 2� 4

3

✏� 7

36

✏

2 + 7

54

✏

3

= 2� 1.333✏� 0.194✏2 + 0.130✏3, (46)

⌘

 

= 7

72

✏

2 � 7

432

✏

3 = 0.097✏2 � 0.016✏3. (47)

Here, the anomalous dimensions are known even to four-
loop order.31,32

The corresponding partially bosonized system, the
Gross-Neveu-Yukawa model, was solved to two-loop or-
der in D = 4� ✏ dimensions with (for N

f

= 2)13,33,55

1/⌫ = 2� 20

21

✏+ 325

44982

✏

2 = 2� 0.952✏+ 0.007✏2, (48)

⌘

�

= 4

7

✏+ 109

882

✏

2 = 0.571✏+ 0.124✏2, (49)

⌘

 

= 1

14

✏� 71

10584

✏

2 = 0.071✏� 0.007✏2. (50)

The relationship between the Gross-Neveu model in D =
2 + ✏ and the Gross-Neveu-Yukawa model in D = 4 � ✏

is similar to the one between the nonlinear sigma model
and the Ginzburg-Landau-Wilson theory (linear sigma
model):12 universality suggests that the two systems in
fact describe the same critical point, just from di↵erent
sides of the transition. Indeed, when further expanding
the (4� ✏)-Gross-Neveu-Yukawa exponents in 1/N

f

, one
finds that the coe�cients are order by order the same as
those one would get by expanding the 1/N

f

-Gross-Neveu
exponents at D = 4 � ✏. We also note that the same is
true for the (2 + ✏)-expansion exponents, as expected.
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f!k" = 2 cos!#3kya" + 4 cos$#3
2

kya%cos$3
2

kxa% , !6"

where the plus sign applies to the upper !!*" and the
minus sign the lower !!" band. It is clear from Eq. !6"
that the spectrum is symmetric around zero energy if t!
=0. For finite values of t!, the electron-hole symmetry is
broken and the ! and !* bands become asymmetric. In
Fig. 3, we show the full band structure of graphene with
both t and t!. In the same figure, we also show a zoom in
of the band structure close to one of the Dirac points !at
the K or K! point in the BZ". This dispersion can be
obtained by expanding the full band structure, Eq. !6",
close to the K !or K!" vector, Eq. !3", as k=K+q, with
&q & " &K& !Wallace, 1947",

E±!q" ' ± vF&q& + O(!q/K"2) , !7"

where q is the momentum measured relatively to the
Dirac points and vF is the Fermi velocity, given by vF
=3ta /2, with a value vF*1#106 m/s. This result was
first obtained by Wallace !1947".

The most striking difference between this result and
the usual case, $!q"=q2 / !2m", where m is the electron
mass, is that the Fermi velocity in Eq. !7" does not de-
pend on the energy or momentum: in the usual case we
have v=k /m=#2E /m and hence the velocity changes
substantially with energy. The expansion of the spectrum
around the Dirac point including t! up to second order
in q /K is given by

E±!q" * 3t! ± vF&q& − $9t!a2

4
±

3ta2

8
sin!3%q"%&q&2, !8"

where

%q = arctan$qx

qy
% !9"

is the angle in momentum space. Hence, the presence of
t! shifts in energy the position of the Dirac point and
breaks electron-hole symmetry. Note that up to order
!q /K"2 the dispersion depends on the direction in mo-
mentum space and has a threefold symmetry. This is the
so-called trigonal warping of the electronic spectrum
!Ando et al., 1998, Dresselhaus and Dresselhaus, 2002".

1. Cyclotron mass

The energy dispersion !7" resembles the energy of ul-
trarelativistic particles; these particles are quantum me-
chanically described by the massless Dirac equation !see
Sec. II.B for more on this analogy". An immediate con-
sequence of this massless Dirac-like dispersion is a cy-
clotron mass that depends on the electronic density as its
square root !Novoselov, Geim, Morozov, et al., 2005;
Zhang et al., 2005". The cyclotron mass is defined, within
the semiclassical approximation !Ashcroft and Mermin,
1976", as

m* =
1

2!
+ !A!E"

!E
,

E=EF

, !10"

with A!E" the area in k space enclosed by the orbit and
given by

A!E" = !q!E"2 = !
E2

vF
2 . !11"

Using Eq. !11" in Eq. !10", one obtains

m* =
EF

vF
2 =

kF

vF
. !12"

The electronic density n is related to the Fermi momen-
tum kF as kF

2 /!=n !with contributions from the two
Dirac points K and K! and spin included", which leads to

m* =
#!

vF

#n . !13"

Fitting Eq. !13" to the experimental data !see Fig. 4"
provides an estimation for the Fermi velocity and the

FIG. 3. !Color online" Electronic dispersion in the honeycomb
lattice. Left: energy spectrum !in units of t" for finite values of
t and t!, with t=2.7 eV and t!=−0.2t. Right: zoom in of the
energy bands close to one of the Dirac points.

FIG. 4. !Color online" Cyclotron mass of charge carriers in
graphene as a function of their concentration n. Positive and
negative n correspond to electrons and holes, respectively.
Symbols are the experimental data extracted from the tem-
perature dependence of the SdH oscillations; solid curves are
the best fit by Eq. !13". m0 is the free-electron mass. Adapted
from Novoselov, Geim, Morozov, et al., 2005.
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Using a combination of quantum Monte Carlo simulations, functional renormalization group cal-
culations and mean-field theory, we study the Hubbard model on the Bernal-stacked honeycomb
bilayer at half-filling as a model system for bilayer graphene. The free bands consisting of two Fermi
points with quadratic dispersions lead to a finite density of states at the Fermi level, which triggers
an antiferromagnetic instability that spontaneously breaks sublattice and spin rotational symmetry
once local Coulomb repulsions are introduced. Our results reveal an inhomogeneous participation
of the spin moments in the ordered ground state, with enhanced moments at the three-fold coordi-
nated sites. Furthermore, we find the antiferromagnetic ground state to be robust with respect to
enhanced interlayer couplings and extended Coulomb interactions.

PACS numbers: 71.27.+a,71.10.Fd,71.30.+h,73.21.Ac,75.70.Cn

There is currently significant interest in understanding
the electronic properties of bilayer graphene (BLG), in
particular the ground state at the charge neutrality point.
Several experimental studies [1–8] hint to the formation
of a symmetry broken state in BLG, but its actual nature
remains ambiguous and is at the moment a highly de-
bated topic. Symmetry breaking in BLG can arise due to
thermal annealing-induced strain on suspended samples
as well as external electric fields applied perpendicular to
the BLG sheets. In the absence of such external pertur-
bations, due to the finite density of states at the Fermi
level in the free band limit, the electronic Coulomb inter-
action is expected to trigger a genuine electronic instabil-
ity and drive BLG into a correlated ground state [9]. Pos-
sible candidate states that have been suggested [10–22]
include an (layered) antiferromagnetic (AF) state, sev-
eral topological states such as quantum anomalous Hall,
quantum spin Hall (QSH) or quantum valley Hall states,
all of which exhibit a finite bulk gap, as well as a gapless
nematic state. While most recent experiments identified
a finite excitation gap of a few meV emerging in BLG
at low temperatures [5–8], the transport data in Ref. [4]
has been interpreted towards the formation of a gapless,
possibly nematic state. Within the currently inconclusive
experimental situation, an AF state is considered a prob-
able ground state [22–24] among the (gapfull) candidates
and thus worth a more detailed examination. Further-
more, the validity of approximative approaches need to
be tested against unbiased and numerically exact results.

Here, we explore the nature of this possible ground
state by taking screened Coulomb interactions into ac-
count within a tight-binding approach for BLG via a
Hubbard model description of the carbon π- electrons. In
particular, since the neutrality point relates to half-filling

FIG. 1. (a) Bernal stacking of the honeycomb bilayer with
intra- (inter-)layer hopping t (t⊥) between the sublattices A,
B and A′, B′ (A′, B). Within the sublattices an equal number
of sites have a coordination number z = 3 or 4. (b) Patching
scheme of the Brillouin zone in the fRG. Dots denote the
momenta at which the vertex function is evaluated.

in the Hubbard model description, we take the opportu-
nity to explore possible electronic instabilities using un-
biased quantum Monte Carlo (QMC) methods. Our sim-
ulations are furthermore augmented by functional renor-
malization group (fRG) calculations [22, 25]. The fRG
allows us to investigate the stability of the AF state ob-
tained with QMC over a broad range of the interaction
strength. We find that within the AF ground state a
local spin moment’s participation in the AF order anti-
correlates to its lattice coordination number z, with z = 3
or 4 for the Bernal stacking, an effect that we show to
hold over the full parameter range from weak to strong
electronic correlations.

In the following we consider the HamiltonianH = H0+
Hint, with the local interaction term Hint = U

∑

i ni,↑ni,↓

and ni,σ = c†i,σci,σ the density operator at site i for
spin σ. Furthermore, H0 denotes the free tight-binding
model [9] containing both intralayer nearest neighbor
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FIG. 1: (color online). Left: Brillouin zone and 18×3 points
used for discretizing the wave-vector dependent interaction.
The solid lines are at constant band energy. The lattice con-
stant (minimal distance between two A-sublattice sites) is set
to unity. Right: Critical temperature Tc for the flow to strong
coupling vs. interaction parameters U and V at half filling
µ = 0. In the region with Tc = 0, the semimetal is stable. For
small U and V > 1.2t, the flow is toward a CDW instability,
for small V and U > 3.8t toward a SDW instability.
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FIG. 2: (color online). Upper plots: Flow of susceptibilities,
solid line CDW, dotted line SDW, for a) U=4t, V =0, b) U=0,
V =1.5t. Lower plots: Effective interactions VT (k1, k2, k3)
very close to the SDW instability at Tc ≈ 0.05t for U=4t,
V =0. The colorbar indicates the values of the couplings. The
incoming wavevectors k1 and k2 are on 12 points on the inner
rings near the Dirac points, for k1/2 =1 to 12 on sublattice A,
and k1/2 =13 to 24 for sublattice B. The 1st outgoing parti-
cle k3 is at point 1 and sublattice A. In c), the 2nd outgoing
particle is on sublattice A, in d) on sublattice B.

at low T . The behavior of the CDW susceptibility and
Tc vs. µ is shown in Fig. 3 a), b). The SDW insta-
bility for dominant U (or J) behaves analogously. Be-
yond a critical doping, the CDW susceptibility remains
finite for T → 0. If we continue the flow down to lower
temperatures T < 10−3t, we observe a strong growth
in the Cooper pairing processes with zero total incom-
ing wavevector. This is clearly visible in the effective
interactions near Tc shown in Fig. 3 c) for µ = 0.75t.
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FIG. 3: (color online). a) Flow of pairing susceptibilities in f -
wave (solid lines) and CDW channel (dashed lines) for chem-
ical potentials µ = 0.1t (thick lines) to µ = 0.75t (thin lines).
b) Critical temperatures for the flow to strong coupling vs. µ.
Crosses: U=1.2t, V =2.4t with a CDW instability for µ < 0.7t
and a triplet Cooper instability for µ > 0.7t. Circles: U=1.2t,
J=2.4t with a SDW instability for µ < 0.65t and a singlet d-
wave Cooper instability for µ ≥ 0.65t. c) Effective interaction
at low scales for U = 1.2t, V = 2.4t, µ = 0.75t, and outgoing
wavevectors fixed on sublattice A, k3 = 2 for a 18 × 3 dis-
cretization. Points k1 and k2 are on the middle of the three
rings nearest to the FS and on sublattice A for index 1 to
18 and on B for 19 to 36. The colorbar indicates the values
of the couplings. d) Crosses: Pair scattering VT (k1, k̄1, k2)
for U=1.2t, V =2.4t, µ = 0.75t with incoming and outgoing
particles on sublattice A and k⃗1 + k⃗(k̄1) = 0 vs. k2 around
the Brillouin zone hexagon. The dotted line is the ansatz
−Vfd∗

f (k⃗1)df (k⃗2). Circles: Same data for the d-wave instabil-
ity at U = 1.2t, J = 2.4t, µ = 0.75t. Here the dashed line is
−Vd[d

∗

x2
−y2(k⃗1)dx2

−y2(k⃗2) + d∗

xy(k⃗1)dxy(k⃗2)].

Here, processes with zero total incoming wavevector (di-
agonal features) are enhanced strongly. The pair scatter-
ing VT (k⃗,−k⃗ → k⃗′,−k⃗′) is odd with respect to reversal
of the outgoing (or incoming) wavevectors, correspond-
ing to triplet pairing. From Fig. 3 c) it can inferred
that the pair partners (k⃗,−k⃗) are on the same sublat-
tice. The pair scattering between wavevectors near the
same Dirac point is attractive, and from one to the other
Dirac point it is repulsive. As shown in Fig 3 d), the zero-
total-momentum part of the effective interaction follows
closely the form −Vfdf (k⃗)df (k⃗′) with the f -wave form

factor df (k⃗) = sin(kx) − 2 sin(kx/2) cos(
√

3ky/2). The
pairing has the same sign on the two sublattices. The cor-
responding meanfield picture gives a nodeless state with
gap amplitudes of opposite sign on the two Fermi circles.
In real space, the pairing with df (k⃗) takes place between
a given site and its 6 next-nearest neighbors, with sign
change upon a π/3-rotation around the site. Thus the

2

for instabilities toward symmetry breaking, the frequency
dependence is neglected and the ωi are set to zero. The
k⃗-dependence of remaining function VT (k⃗1, k⃗2, k⃗3) is dis-
cretized in the so-called N -patch scheme, introduced
in this context by Zanchi and Schulz[18]. For stan-
dard many-fermion systems with a FS, this amounts to
keeping VT (k⃗1, k⃗2, k⃗3) constant within patches labeled by
ki = 1, . . .N perpendicular to the FS. This defines an
N3-component coupling function VT (k1,k2, k3), which is

computed for k⃗(ki) = k⃗i, i = 1, . . . 3, on the FS. As for
the honeycomb lattice there is no FS at half band filling,
we generalize the patching scheme to two or three rings
of 18 or 24 patches around the Dirac points (see Fig. 1).
In addition we have a band index for the incoming and
outgoing particles.

The RG flow is started at an initial temperature T0.
The initial interaction is given by the bare interaction
with the onsite repulsion U and the nearest-neighbor re-
pulsion V . Specifically, we search for flows to strong cou-
pling, where for a certain low temperature Tc one or sev-
eral components of VT (k1, k2, k3) become large. At this
point the approximations break down, and the flow has to
be stopped. Information on low-temperature state is ob-
tained by analyzing which coupling functions grow most
strongly and from the flow of susceptibilities. In partic-
ular for 2D systems, this instability does not guarantee
true long-range order. Rather, it should be interpreted as
a breakdown of the (semi-)metallic state and as indicator
for the leading correlations at low T .

We begin with the semimetal for zero doping and chem-
ical potential µ = 0. The first finding is perturbative
stability. Starting the RG flow at high T and small U ,
V or J , we can follow the flow down to lowest T without
a divergence. This is quite different from many-fermion
systems with a finite density of states at the Fermi en-
ergy, where the flow practically always leads to some kind
of instability. In our case, the absence of a flow to strong
coupling indicates the absence of long-range order due to
electronic interactions even at lowest T .

Next we increase the bare interactions. Above a crit-
ical value Uc ∼ 3.8t for the onsite repulsion U with
V = J = 0, the interactions flow to strong coupling. The
static antiferromagnetic (AF) spin susceptibility grows
most strongly toward the critical temperature scale, in-
dicating a tendency toward AF spin-density wave (SDW)
formation with opposite orientation of the ordered spin
moment on A and B sublattices. For small U , J = 0, and
increasing nearest-neighbor repulsion V we again find a
flow to strong coupling for V > Vc ∼ 1.2t, now with lead-
ing charge-density wave (CDW) correlations for different
charge densities on the two sublattices. This compares
favorably with a previous 1/N -analysis[15] finding the
same instabilities beyond critical values Uc and Vc. There
is also good agreement with the early Quantum Monte
Carlo work by Sorella[13] who found a transition to an
AF Mott-state at U ∼ 4t. In Fig. 1 we show the depen-

dence of the critical temperature Tc for the flow to strong
coupling on the interaction parameters. The critical U
for boundary of the SDW instability is more or less unaf-
fected by an increasing V , while Vc for the CDW regime
is shifts to larger V with a roughly linear dependence on
U . When the two lines meet, there is a continuous change
in the flow from leading SDW to leading CDW correla-
tions (or vice versa). This is consistent with a first order
transition, if order is possible at all. The competition for
the low energy spectral weight not included in this study
as the selfenergy is neglected could however reduce the
ordered moments in the transition region.

In Fig. 2 we display the flow of various susceptibilities
for SDW and CDW instabilities, and VT very close to Tc.
The actual calculation takes place in the fermionic basis
which diagonalizes the hopping term. The resulting in-
teractions are transformed back into the sublattice basis
with operators c(†)

k⃗,s,b
on sublattice b = A,B for incoming

and outgoing particles. In Fig. 2 c), d) we show the real
part of the effective VT (k1, k2, k3) for a small number of
N = 12 k⃗-space points near the Dirac points (with points
1,2 and K⃗, 3 and 4 at K⃗ ′, continuing clockwise around
the Brillouin zone hexagon) close to Tc of the SDW in-
stability. Patch indices 1 to 12 belong to particles on
sublattice A, and 13 to 24 to sublattice B. As function of
the incoming k1, k2 with outgoing k3 fixed, VT (k1, k2, k3)
shows either vertical or horizontal features with strongly
attractive or repulsive values. The vertical features have
k2 = k3 (i.e. same wavevector, same sublattice for parti-
cles 2 and 3) or k2 = k3 ± 12 (same wavevector, but dif-
ferent sublattices for particles 2 and 3). We can compare
VT (k1, k2, k3) with an infinite-range interaction which
gives a SDW as groundstate. On a lattice with N sites,

we can define spin-spin interactions N−1
∑

q⃗ Jb,b′

q⃗ S⃗b
q⃗ · S⃗b′

−q⃗

with S⃗b
q⃗ = 1

2

∑

k⃗ σ⃗ss′c†
k⃗+q⃗,s,b

ck⃗,s′,b. For the infinite-range

SDW interaction, only the q⃗ = 0 components in Jq⃗,b,b′

are nonzero. We should have Jb,b
q⃗=0 < 0, i.e. ferromag-

netic (FM) on the same sublattice, while Jb,b′

q⃗=0 > 0, i.e.
AF, for different sublattices. Comparing this with the
effective interaction from the fRG,

1

2N

∑

V b1b2b3
T (k⃗, k⃗′, k⃗+q⃗)c†

k⃗+q⃗,s,b3
c†
k⃗′−q⃗,s′,b4

ck⃗′,s′,b2
ck⃗,s,b1

,

we get V bb′b′

T (k⃗, k⃗′, k⃗′ − q⃗) = −Jb,b′

q⃗ and V bb′b
T (k⃗, k⃗′, k⃗ +

q⃗) = −Jb,b′

q⃗ /2. In the fRG data in Fig. 1 c) and d),
only the q⃗ = 0 interactions grow strongly, and the signs
depending on the sublattice follow exactly that of the re-
duced spin-spin-interaction with FM intra-sublattice and
AF inter-subband processes. The CDW instability can be
read off from VT in a similar way.

Next we turn to the doped system. Moving µ away
from zero, we obtain two FSs around the Dirac points
and the q⃗ = 0 nesting between the two bands is re-
duced. This cuts off the CDW and SDW instabilities

~

SDW CDW

4

0
2

4

0
1

2

0

2

4

CDW

U

QSH

CDW
SM

V1

QSH

SDW

SDWV 2

FIG. 3: Complete mean-field phase diagram for the spinful
model. The transitions from the semimetal (SM) to the in-
sulating phases are continuous, whereas transitions between
any two insulating phases (red lines) are first-order.

[15].
Quantum fluctuations, however, lift the mean-field

degeneracy between the QAH and QSH phases. To
quadratic order in quantum fluctuations (RPA) about
the QSH phase , we obtain an effective action Seff =
∑

k⃗ δχµ(k⃗, Ω)Kµν(k⃗, Ω)δχν(−k⃗,−Ω) which shows the
presence of six modes (2 longitudinal and 4 transverse
modes), and 2 of the transverse modes correspond to de-
generate Goldstone modes whose velocity is proportion-
ality to the Fermi velocity v ≈ vf = 3t/2|a|. Thus, the
zero-point motion associated with these gapless modes,
lowers the free energy of the QSH state relative to the
QAH state.

Renormalization Group Analysis - Mean field theory
generally starts with a given, in a sense, biased Ansatz,
and investigate the self-consistency of the mean field so-
lution. Therefore, it is important to investigate the topo-
logical Mott states with a method without any a priori
bias. Next we go beyond mean-field theory and RPA us-
ing the temperature(T )-flow functional renormalization

group (fRG)[21][22]. In this scheme, we discretize the k⃗-
dependence of the interaction [23] and consider all possi-
ble scattering processes between a set of initial and final
momenta that occur between points on rings around the
Dirac points (inset of Fig. 4). Starting with T0 ∼ 2t,
the temperature T is lowered, and a flowing (renormal-
ized) interaction VT is obtained by the coupled summa-
tion of the T -derivatives of all one-loop channels. Due
to this, the method is unbiased and goes beyond the
mean-field-level. Applying the scheme to the Hamilto-
nian, Eq. 8, we search for flows to strong coupling, where
for a low temperature Tc certain components of VT be-
come large. Then the approximations break down, and
the flow is stopped. Information on the low-T state is
obtained from analyzing which coupling functions grow
most strongly and from susceptibilities for static external
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FIG. 4: a) Data for U=0, V1=1.4t, V2=0. Susceptibilities of
each phase vs. T are shown: CDW (black); SDW (green);
QAH(red) and QSH (blue).b) Same for U=0, V1=0, V2=1.8t
(QSH instability). The QSH phase has a larger susceptibility
than QAH. Inset: fRG phase diagram at U=0, indicating SM
(blue) and insulating (red) regions (CDW dominates at large
V1, QSH at large V2.) The colorbar correspond to Tc below
which the insulating phases develop in fRG.

fields coupling to the various order parameters. In this
scheme, a tendency towards ordering at a finite vector
Q can be detected as a growth of the associated vertex
VT . However, we have found that largest couplings occur
at Q = 0, which strongly supports the mean-field results
presented above.

For onsite and nearest-neighbor repulsions U > Uc ≈
3.8t and V1 > V1c ≈ 1.2t, the flow to strong coupling
is either an SDW instability for dominant U or a CDW
instability for dominant V1, in good agreement with a
1/N-study[24] and Quantum-Monte-Carlo[17]. For more
details, see Ref. [25]. If we include a sufficiently strong
second-nearest-neighbor repulsion V2 > 1.6t, the flows
change qualitatively; there is a leading growth of the QSH
susceptibility. In Fig. 4 a) and b) we compare the T -flows
of various susceptibilities for V1 > V2 and for V2 > V1.
For the latter case, the QSH susceptibility grows most
strongly toward low T , followed by the QAH susceptibil-
ity, which is consistent with the RPA treatment of the
Goldstone modes in the QSH. The QSH phase remains
stable even when a moderate onsite interaction of U = t
or U = 2t is introduced. Hence the global structure of
the mean-field phase diagram is confirmed by the fRG
results. Note however that the slope of the lines of criti-
cal V1 versus V2 differs. We interpret this a competition
effect captured by the fRG, where V2 decreases the CDW
tendencies induced by V1.

Discussion - We have shown that topological phases
displaying the QAH and QSH effects can be generated
from strong interactions - thus, we refer to these phases
as topological Mott insulators. Both phases have asso-
ciated with them conventional order parameters which
develop continuously at the quantum critical phase tran-
sition from the semi-metallic state. However, these states
are also described by topological quantum numbers which
jump discontinuously at the transition. Although the in-
teraction strengths needed to produce these phases are
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• Modified hopping t → t+dt  
→ EPC coupling induces Kekule instability:
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• Phase diagram with short-ranged Coulomb i.a.:



Critical scales of honeycomb stacks

• Critical scales with rescaled ab initio interaction parameters:
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• Ab initio parameters put system close to QSH/AFM phase boundary
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Figure 1 | Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
a, d+ id pairing exhibiting phase winding around the hexagonal Fermi surface, which breaks TRS and parity (✓ = 2⇡/3). b, Conduction band for monolayer
graphene1. At 5/8 filling of the ⇡ band, the Fermi surface is hexagonal, and the DOS is logarithmically divergent (c) at three inequivalent saddle points of
the dispersion M

i

(i = 1,2,3). Their locations are given by ±e
i

, where 2e
i

is a reciprocal lattice vector. The singular DOS strongly enhances the effect of
interactions, driving the system into a chiral superconducting state (a). As the Fermi surface is nested, superconductivity competes with density-wave
instabilities, and a full renormalization group treatment is required to establish the dominance of superconductivity. A hexagonal Fermi surface and log
divergent density of states also arise at 3/8 filling, giving rise to analagous physics.

Competing orders
In systemswith near-nested Fermi surface, superconductivity has to
compete with charge-density-wave (CDW) and spin-density-wave
(SDW) instabilities34. At the first glance, it may seem that a system
with repulsive interactions should develop a density-wave order
rather than become a superconductor. However, to analyse this
properly, one needs to know the susceptibilities to the various
orders at a relatively small energy, E0, at which the order actually
develops. The couplings at E0 generally differ from their bare values
because of renormalizations by fermions with energies between E0
andW . At weak coupling, these renormalizations are well captured
by the renormalization group technique.

Interacting fermionswith a nested Fermi surface and logarithmi-
cally divergent DOS have previously been studied on the square lat-
tice using renormalization group methods29–31,34, where SDW fluc-
tuations were argued to stimulate superconductivity. The analysis
also revealed near degeneracy between superconductivity and SDW
orders. The competition between these orders is decided by a subtle
interplay between deviations from perfect nesting, which favour
superconductivity, and subleading terms in the renormalization
group flow, which favour SDW. In contrast, the renormalization
group procedure on the honeycomb lattice unambiguously selects
superconductivity at leading order, allowing us to safely neglect sub-
leading terms. The difference arises because the honeycomb lattice
contains three saddle points, whereas the square lattice has only two,
and the extra saddle point tips the balance seen on the square lattice
between magnetism and superconductivity decisively in favour of
superconductivity. A similar tipping of a balance between supercon-
ductivity and SDWin favour of superconductivity has been found in
renormalization group studies of Fe-pnictide superconductors35,36.

In previous works on graphene at the M point, various instabil-
ities were analysed using the random-phase approximation (RPA)

and mean-field theory. Ref. 4 considered the instability to d-wave
superconductivity, ref. 5 considered a charge ‘Pomeranchuk’ in-
stability to a metallic phase breaking lattice rotation symmetry, and
refs 6–8 considered a SDW instability to an insulating phase.Within
the framework of mean-field theory, used in the above works, all
of these phases are legitimate potential instabilities of the system.
However, clearly graphene at theM point cannot be simultaneously
superconducting, metallic and insulating. The renormalization
group analysis treats all competing orders on an equal footing,
and predicts that the dominant weak coupling instability is to
superconductivity, for any choice of repulsive interactions, even for
perfect nesting. Further, the Ginzburg–Landau theory constructed
near the renormalization group fixed point favours the d+id state.

The model
We follow the procedure developed for the square lattice34 and
construct a patch renormalization group that considers only
fermions near three saddle points, which dominate the DOS. There
are four distinct interactions in the low-energy theory, involving
two-particle scattering between different patches, as shown in Fig. 2.

The system is described by the low-energy theory

L =
3X

↵=1

 †
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†
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†
↵ � �

⇤
(1)

where summation is over patch labels↵,�=M1,M2,M3.A spin sum
is implicit in the above expression, with the spin structure for each
of the four terms being � ,�,�,� , where � and � label the spin up
and down states. Here ✏k is the tight binding dispersion, expanded

NATURE PHYSICS | VOL 8 | FEBRUARY 2012 | www.nature.com/naturephysics 159



RG for graphene @VHS - g-ology

NATURE PHYSICS DOI: 10.1038/NPHYS2208
ARTICLES

 

En
er

gy

D
O

S

K’

K’

K

k

x

∆3

∆3

∆2

∆2 ∆1

∆1

M3

M3

M2 M1

K

e2

e1

e3

Λ

 

∆e2i ∆ei

∆e4i ∆e5i

∆∆e3i

 ¬W  W Energy

Van Hove  singularity
n = 3/8, 5/8

a b cθ

θθ

θ

θ

Saddle point

Dirac point

M1 M2

Figure 1 | Chiral superconductivity arises when graphene is doped to the Van Hove singularity at the saddle point (M points of the Brillouin zone).
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i

(i = 1,2,3). Their locations are given by ±e
i

, where 2e
i

is a reciprocal lattice vector. The singular DOS strongly enhances the effect of
interactions, driving the system into a chiral superconducting state (a). As the Fermi surface is nested, superconductivity competes with density-wave
instabilities, and a full renormalization group treatment is required to establish the dominance of superconductivity. A hexagonal Fermi surface and log
divergent density of states also arise at 3/8 filling, giving rise to analagous physics.

Competing orders
In systemswith near-nested Fermi surface, superconductivity has to
compete with charge-density-wave (CDW) and spin-density-wave
(SDW) instabilities34. At the first glance, it may seem that a system
with repulsive interactions should develop a density-wave order
rather than become a superconductor. However, to analyse this
properly, one needs to know the susceptibilities to the various
orders at a relatively small energy, E0, at which the order actually
develops. The couplings at E0 generally differ from their bare values
because of renormalizations by fermions with energies between E0
andW . At weak coupling, these renormalizations are well captured
by the renormalization group technique.

Interacting fermionswith a nested Fermi surface and logarithmi-
cally divergent DOS have previously been studied on the square lat-
tice using renormalization group methods29–31,34, where SDW fluc-
tuations were argued to stimulate superconductivity. The analysis
also revealed near degeneracy between superconductivity and SDW
orders. The competition between these orders is decided by a subtle
interplay between deviations from perfect nesting, which favour
superconductivity, and subleading terms in the renormalization
group flow, which favour SDW. In contrast, the renormalization
group procedure on the honeycomb lattice unambiguously selects
superconductivity at leading order, allowing us to safely neglect sub-
leading terms. The difference arises because the honeycomb lattice
contains three saddle points, whereas the square lattice has only two,
and the extra saddle point tips the balance seen on the square lattice
between magnetism and superconductivity decisively in favour of
superconductivity. A similar tipping of a balance between supercon-
ductivity and SDWin favour of superconductivity has been found in
renormalization group studies of Fe-pnictide superconductors35,36.

In previous works on graphene at the M point, various instabil-
ities were analysed using the random-phase approximation (RPA)

and mean-field theory. Ref. 4 considered the instability to d-wave
superconductivity, ref. 5 considered a charge ‘Pomeranchuk’ in-
stability to a metallic phase breaking lattice rotation symmetry, and
refs 6–8 considered a SDW instability to an insulating phase.Within
the framework of mean-field theory, used in the above works, all
of these phases are legitimate potential instabilities of the system.
However, clearly graphene at theM point cannot be simultaneously
superconducting, metallic and insulating. The renormalization
group analysis treats all competing orders on an equal footing,
and predicts that the dominant weak coupling instability is to
superconductivity, for any choice of repulsive interactions, even for
perfect nesting. Further, the Ginzburg–Landau theory constructed
near the renormalization group fixed point favours the d+id state.

The model
We follow the procedure developed for the square lattice34 and
construct a patch renormalization group that considers only
fermions near three saddle points, which dominate the DOS. There
are four distinct interactions in the low-energy theory, involving
two-particle scattering between different patches, as shown in Fig. 2.

The system is described by the low-energy theory

L =
3X
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where summation is over patch labels↵,�=M1,M2,M3.A spin sum
is implicit in the above expression, with the spin structure for each
of the four terms being � ,�,�,� , where � and � label the spin up
and down states. Here ✏k is the tight binding dispersion, expanded
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Figure 2 | Possible interactions in the patch model. a, Feynman diagrams
representing allowed two-particle scattering processes among different
patches (equation (1)). Solid and dashed lines represent fermions on
different patches, whereas wavy lines represent interactions. b, Pictorial
representation of these scattering processes, superimposed on a contour
plot of the energy dispersion. Each scattering process comes in three
flavours, according to the patches involved. However, it follows by
symmetry that the scattering amplitudes are independent of the patches
involved, and therefore we suppress the flavour labels.

up to quadratic terms about each saddle point. For example, near
pointM1, the tight-bindingmodel37 predicts dispersion ✏k =2⇡2a2t
((�kx)2 �

p
3�kx�ky +O((�k)4)), where t is the nearest-neighbour

hopping, a is the lattice constant and �k= k�kM1 . The chemical
potential value µ = 0 describes a system doped exactly to the
saddle point. We note that whereas the existence of saddle points
is a topological property of the Fermi surface and is robust to
arbitrarily long-range hopping, the Fermi surface nesting is spoilt
by third-neighbour (and higher) hopping effects1,4. Inequivalent
saddle points are connected by a nesting vector Q↵� = e↵ � e�

(Fig. 1). The short-range interaction model, used in our analysis,
is expected to provide a good approximation under the conditions
ofmetallic screening arising due to the states near the Fermi surface.
The screening generally depends on the level of doping relative to
the M point, introducing some uncertainty into the bare values for
the interactions. However, we will show that precise knowledge of
these bare values is not required to determine the final state.

The patch structure of the interactions is restricted by mo-
mentum conservation, which allows only the four interactions in
equation (1). The umklapp interaction g3 is allowed, because it
conserves momentum modulo a reciprocal lattice vector. All four
interactions in equation (1) are marginal at tree level, but acquire
logarithmic corrections in perturbation theory. These logarithmic
corrections come from energy scales E < ⇤, where ⇤ ⇡ t is the
energy scale at which higher order corrections to the disper-
sion become important.

Logarithmic divergences in perturbation theory analysis indicate
that the problem is well suited to study using a renormalization
group technique. The building blocks of the renormalization
group are the susceptibilities in the particle–particle and particle–
hole channels, ⇧pp and ⇧ph, evaluated respectively at momentum
transfer zero and at momentum transfer Q↵ 6=� between points M↵

andM� . Similarly to ref. 34, we have

⇧pp(0)=
⌫0

4
ln

⇤

max(T ,µ)
ln

⇤

T
,

⇧ph(Q↵ 6=�)=
⌫0

4
ln

⇤

max(T ,µ)
ln

⇤

max(T ,µ,t3)

and ⇧ph(0),⇧pp(Q↵ 6=�) = ⌫0 ln(⇤/max(T ,µ)), where ⇤ is our
ultraviolet cutoff (Fig. 1) and T is the temperature. The density of
states at a saddle point is ⌫0 ln(⇤/max(T ,µ)) per spin projection.
The second log factor in ⇧pp(0) arises in a conventional way owing
to the divergence in the Cooper channel. The second log factor in
⇧ph(Q↵ 6=�) arises from nesting of the Fermi surface, and is cut in the
infrared by any term that spoils the nesting, such as third-neighbour
hopping t3 or doping µ (ref. 4). At weak coupling the Cooper log is
large, and we assume that max(t3,µ) ⌧ ⇤ so that the nesting log
is also large. In this limit, ⇧pp(0) and ⇧ph(Q) are parametrically
larger than⇧ph(0) and⇧pp(Q), so that the renormalization group is
dominated by the double log divergent susceptibilities.

Renormalization group equations
The renormalization group equations are obtained by extending
the approach developed for the square lattice problem31 to a
number of patches n > 2. The number of patches matters only
in diagrams with zero net momentum in fermion loops, as it is
only there that we get summation over fermion flavours inside
the loop. The only zero-momentum loop with a log2 divergence
is in the Cooper channel. Moreover, only the g3 interaction
changes the patch label of a Cooper pair, therefore, the number
of patches affects only diagrams where two g3 interactions are
combined in the Cooper channel. With logarithmic accuracy, using
y = ⇧pp(k= 0,E)= (⌫0/4)ln2(⇤/E) as the renormalization group
time, we obtain the �-functions

dg1

dy
= 2d1g1(g2 �g1),

dg2

dy
= d1(g2

2 +g

2
3)

dg3

dy
= �(n�2)g2

3 �2g3g4 +2d1g3(2g2 �g1),

dg4

dy
= �(n�1)g2

3 �g

2
4

(2)

Here d1(y) = d⇧ph(Q)/dy ⇡ ⇧ph(Q)/⇧pp(0) is the ‘nesting
parameter’31,34. This quantity equals one in the perfectly nested
limit. For non-perfect nesting, d1(y) has the asymptotic forms
d1(y = 0)= 1, d1(y � 1)= ln|⇤/t3|/py , and interpolates smoothly
in between. Because the renormalization group equations flow to
strong coupling at a finite scale yc, we treat 0 < d1(yc) < 1 as a
parameter in our analysis.

The �-functions, equation (2), reproduce the two-patch renor-
malization group from ref. 31 when we take n = 2 and neglect
subleading O(log) divergent terms (d2,3(y) from ref. 31), and also
reproduce for n = 2 the renormalization group equations for the
Fe-pnictides35. Graphene near the Van Hove singularity, however,
is described by n= 3.

We note from inspection of equation (2) that g1,g2 and g3
must stay positive (repulsive) if they start out positive. This
follows because the �-function for g2 is positive definite, and the
�-functions for g1 and g3 vanish as the respective couplings go
to zero. However, g4 decreases under the renormalization group,
eventually changing sign and becoming negative. As we will see,
g3�g4 becomes large and positive under the renormalization group,
driving an instability to a superconducting phase. However, the
positive g3 coupling penalizes s-wave superconductivity, so pairing
occurs in a higher angularmomentum (d-wave) channel.

We integrate our renormalization group equations with n= 3,
starting from gi = g0 = 0.1 (these values are chosen for illustration)
and modelling d1 as d1(y) = 1/

p
1+y . The results are plotted in

Fig. 3. Similar results are obtained if we just treat d1 as a constant.
The couplings diverge at a scale yc ⇠1/g0, corresponding to a critical
temperature and ordering energy scale

Tc,E0 ⇠⇤exp(�A/
p

g0⌫0) (3)
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Figure 2 | Possible interactions in the patch model. a, Feynman diagrams
representing allowed two-particle scattering processes among different
patches (equation (1)). Solid and dashed lines represent fermions on
different patches, whereas wavy lines represent interactions. b, Pictorial
representation of these scattering processes, superimposed on a contour
plot of the energy dispersion. Each scattering process comes in three
flavours, according to the patches involved. However, it follows by
symmetry that the scattering amplitudes are independent of the patches
involved, and therefore we suppress the flavour labels.

up to quadratic terms about each saddle point. For example, near
pointM1, the tight-bindingmodel37 predicts dispersion ✏k =2⇡2a2t
((�kx)2 �

p
3�kx�ky +O((�k)4)), where t is the nearest-neighbour

hopping, a is the lattice constant and �k= k�kM1 . The chemical
potential value µ = 0 describes a system doped exactly to the
saddle point. We note that whereas the existence of saddle points
is a topological property of the Fermi surface and is robust to
arbitrarily long-range hopping, the Fermi surface nesting is spoilt
by third-neighbour (and higher) hopping effects1,4. Inequivalent
saddle points are connected by a nesting vector Q↵� = e↵ � e�

(Fig. 1). The short-range interaction model, used in our analysis,
is expected to provide a good approximation under the conditions
ofmetallic screening arising due to the states near the Fermi surface.
The screening generally depends on the level of doping relative to
the M point, introducing some uncertainty into the bare values for
the interactions. However, we will show that precise knowledge of
these bare values is not required to determine the final state.

The patch structure of the interactions is restricted by mo-
mentum conservation, which allows only the four interactions in
equation (1). The umklapp interaction g3 is allowed, because it
conserves momentum modulo a reciprocal lattice vector. All four
interactions in equation (1) are marginal at tree level, but acquire
logarithmic corrections in perturbation theory. These logarithmic
corrections come from energy scales E < ⇤, where ⇤ ⇡ t is the
energy scale at which higher order corrections to the disper-
sion become important.

Logarithmic divergences in perturbation theory analysis indicate
that the problem is well suited to study using a renormalization
group technique. The building blocks of the renormalization
group are the susceptibilities in the particle–particle and particle–
hole channels, ⇧pp and ⇧ph, evaluated respectively at momentum
transfer zero and at momentum transfer Q↵ 6=� between points M↵

andM� . Similarly to ref. 34, we have

⇧pp(0)=
⌫0

4
ln

⇤

max(T ,µ)
ln

⇤

T
,

⇧ph(Q↵ 6=�)=
⌫0

4
ln

⇤

max(T ,µ)
ln

⇤

max(T ,µ,t3)

and ⇧ph(0),⇧pp(Q↵ 6=�) = ⌫0 ln(⇤/max(T ,µ)), where ⇤ is our
ultraviolet cutoff (Fig. 1) and T is the temperature. The density of
states at a saddle point is ⌫0 ln(⇤/max(T ,µ)) per spin projection.
The second log factor in ⇧pp(0) arises in a conventional way owing
to the divergence in the Cooper channel. The second log factor in
⇧ph(Q↵ 6=�) arises from nesting of the Fermi surface, and is cut in the
infrared by any term that spoils the nesting, such as third-neighbour
hopping t3 or doping µ (ref. 4). At weak coupling the Cooper log is
large, and we assume that max(t3,µ) ⌧ ⇤ so that the nesting log
is also large. In this limit, ⇧pp(0) and ⇧ph(Q) are parametrically
larger than⇧ph(0) and⇧pp(Q), so that the renormalization group is
dominated by the double log divergent susceptibilities.

Renormalization group equations
The renormalization group equations are obtained by extending
the approach developed for the square lattice problem31 to a
number of patches n > 2. The number of patches matters only
in diagrams with zero net momentum in fermion loops, as it is
only there that we get summation over fermion flavours inside
the loop. The only zero-momentum loop with a log2 divergence
is in the Cooper channel. Moreover, only the g3 interaction
changes the patch label of a Cooper pair, therefore, the number
of patches affects only diagrams where two g3 interactions are
combined in the Cooper channel. With logarithmic accuracy, using
y = ⇧pp(k= 0,E)= (⌫0/4)ln2(⇤/E) as the renormalization group
time, we obtain the �-functions

dg1

dy
= 2d1g1(g2 �g1),

dg2

dy
= d1(g2

2 +g

2
3)

dg3

dy
= �(n�2)g2

3 �2g3g4 +2d1g3(2g2 �g1),

dg4

dy
= �(n�1)g2

3 �g

2
4

(2)

Here d1(y) = d⇧ph(Q)/dy ⇡ ⇧ph(Q)/⇧pp(0) is the ‘nesting
parameter’31,34. This quantity equals one in the perfectly nested
limit. For non-perfect nesting, d1(y) has the asymptotic forms
d1(y = 0)= 1, d1(y � 1)= ln|⇤/t3|/py , and interpolates smoothly
in between. Because the renormalization group equations flow to
strong coupling at a finite scale yc, we treat 0 < d1(yc) < 1 as a
parameter in our analysis.

The �-functions, equation (2), reproduce the two-patch renor-
malization group from ref. 31 when we take n = 2 and neglect
subleading O(log) divergent terms (d2,3(y) from ref. 31), and also
reproduce for n = 2 the renormalization group equations for the
Fe-pnictides35. Graphene near the Van Hove singularity, however,
is described by n= 3.

We note from inspection of equation (2) that g1,g2 and g3
must stay positive (repulsive) if they start out positive. This
follows because the �-function for g2 is positive definite, and the
�-functions for g1 and g3 vanish as the respective couplings go
to zero. However, g4 decreases under the renormalization group,
eventually changing sign and becoming negative. As we will see,
g3�g4 becomes large and positive under the renormalization group,
driving an instability to a superconducting phase. However, the
positive g3 coupling penalizes s-wave superconductivity, so pairing
occurs in a higher angularmomentum (d-wave) channel.

We integrate our renormalization group equations with n= 3,
starting from gi = g0 = 0.1 (these values are chosen for illustration)
and modelling d1 as d1(y) = 1/

p
1+y . The results are plotted in

Fig. 3. Similar results are obtained if we just treat d1 as a constant.
The couplings diverge at a scale yc ⇠1/g0, corresponding to a critical
temperature and ordering energy scale

Tc,E0 ⇠⇤exp(�A/
p

g0⌫0) (3)
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‣ reproduce two-patch RG for n=2	



‣ Graphene at VHS needs n=3
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Nandkishore, Levitov, Chubukov, Nature Physics 8, 158 (2012)	



Furukawa, Rice, Salmhofer, Phys. Rev. Lett. 81, 3195–3198 (1998)



RG for graphene @VHS - g-ology

‣ Close competition between SDW and dSC	



‣ dSC is leading instability for all values of nesting	



➡ in contrast to square lattice (SDW@perfect nesting)

• Susceptiblities (introduce test vertices)
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Figure 3 | Flow of couplings with renormalization group scale y, starting
from repulsive interactions. Note that the coupling g4 changes sign and
becomes attractive, leading to a (superconducting) instability at the energy
scale yc (equation (3)). Inset: Critical couplings G

i

(equation (4)) near yc as
a function of the nesting parameter at the ordering energy scale, d1(yc). The
dominance of superconductivity over spin-density-wave order arises
because �G4 > G2 for all values of d1(yc). The renormalization group flow
is obtained by numerical integration of (2) with the initial conditions
g

i

(0) = 0.1 and modelling the nesting parameter as d1(y) = 1/
p

1+y. The
qualitative features of the flow are insensitive to the initial conditions and
to how we model d1. The critical couplings (inset) are universal and
independent of the initial conditions.

Here A is a non-universal number that depends on how we
model d1(y). For d1 = 1 (perfect nesting, corresponding to zero
third-neighbour hopping t3), we obtain A = 1.5. An RPA-type
estimate of g0 is outlined in the Supplementary Information.
Although Tc and E0 are exponentially sensitive to g0, thus
introducing a considerable uncertainty to our estimate, a strong
enhancement of characteristic energy scales relative to the BCS
result is evident from equation (3).

A similar p
g0 dependence arises in the treatment of colour

superconductivity38 and in the analysis of the pairing near
quantum-critical points in 3D (ref. 39). It results in a Tc that
is strongly enhanced compared with the standard BCS result,
Tc ⇠ exp(�A0/g0⌫0). It should be noted that the enhancement
of Tc in equation (3) arises from weak-coupling physics. It is
distinct from the high-Tc superconductivity that could arise if the
microscopic interactions were strong26,40–42.

Returning to our renormalization group analysis, we note that
near the instability threshold, g1,g2,g3 ! 1 and g4 ! �1, with
�g4 >g3 >g2 >g1. This observationmay bemade precise by noting
that close to yc, the interactions scale as

gi(y)⇡
Gi

yc �y
(4)

Substituting into equation (2), we obtain a set of polynomial
equations, which may be solved for the coefficients Gi as a
function of d1(yc). The solution is plotted in the inset of
Fig. 3. Note that �G4 > G3 > G2 > G1 for all values of d1(yc)
satisfying 0  d1(yc)  1. We have verified that any choice of
repulsive bare couplings leads to the same limiting trajectory (see
Supplementary Information).
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state would be realized if K2 < 0 in the Landau
expression for the free energy, equation (10). b, The d
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2�y

2 and d

xy

orders
can co-exist if K2 > 0 in equation (10). A microscopic calculation indicates
that the states (b) have lower free energy.

Susceptibilities
We now investigate the instabilities of the system by evaluating
the susceptibilities � for various types of order. To analyse the
superconducting instability, we introduce infinitesimal test vertices
corresponding to particle–particle pairing into the action, L = L0+
�L, where L0 is given by equation (1) and

�L =
3X
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†
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one test vertex for each patch. The renormalization of the test
vertices is governed by the equation31
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which can be diagonalized by transforming to the eigenvector basis

�̃ a = �̃p
2

�
0,1,�1

�
, �̃ b =

r
2
3
�̃

✓
1,�1

2
,�1

2
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(6)

�̃ c =
�̃p
3

�
1,1,1

�
(7)

Here �̃ c is an s-wave order, whereas �̃ a and �̃ b correspond to
order parameters that vary around the Fermi surface as �̃ cos(2')
and �̃ sin(2'), where ' is the angle to the x axis (Fig. 4). Such a
dependence describes d-wave superconducting orders (SCd), as the
gap changes sign four times along the Fermi surface. In 2Dnotation,
the two order parameters �̃ a and �̃ b correspond to dxy and dx2�y2

superconducting orders respectively.
Notably, we find that the s-wave vertex �̃ c, equation (7), has

a negative eigenvalue and is suppressed under renormalization
group flow (equation (5)). This is to be expected, given that we
started out with repulsive microscopic interactions. At the same
time, the d-wave orders �̃ a and �̃ b have the (identical) eigenvalue
g3�g4, whichmay be negative at the bare level but becomes positive
under the renormalization group, indicating an instability in the
d-wave channel. We solve equation (5) for the d-wave orders, by
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(equation (4)) near yc as
a function of the nesting parameter at the ordering energy scale, d1(yc). The
dominance of superconductivity over spin-density-wave order arises
because �G4 > G2 for all values of d1(yc). The renormalization group flow
is obtained by numerical integration of (2) with the initial conditions
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(0) = 0.1 and modelling the nesting parameter as d1(y) = 1/
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1+y. The
qualitative features of the flow are insensitive to the initial conditions and
to how we model d1. The critical couplings (inset) are universal and
independent of the initial conditions.

Here A is a non-universal number that depends on how we
model d1(y). For d1 = 1 (perfect nesting, corresponding to zero
third-neighbour hopping t3), we obtain A = 1.5. An RPA-type
estimate of g0 is outlined in the Supplementary Information.
Although Tc and E0 are exponentially sensitive to g0, thus
introducing a considerable uncertainty to our estimate, a strong
enhancement of characteristic energy scales relative to the BCS
result is evident from equation (3).

A similar p
g0 dependence arises in the treatment of colour

superconductivity38 and in the analysis of the pairing near
quantum-critical points in 3D (ref. 39). It results in a Tc that
is strongly enhanced compared with the standard BCS result,
Tc ⇠ exp(�A0/g0⌫0). It should be noted that the enhancement
of Tc in equation (3) arises from weak-coupling physics. It is
distinct from the high-Tc superconductivity that could arise if the
microscopic interactions were strong26,40–42.

Returning to our renormalization group analysis, we note that
near the instability threshold, g1,g2,g3 ! 1 and g4 ! �1, with
�g4 >g3 >g2 >g1. This observationmay bemade precise by noting
that close to yc, the interactions scale as

gi(y)⇡
Gi

yc �y
(4)

Substituting into equation (2), we obtain a set of polynomial
equations, which may be solved for the coefficients Gi as a
function of d1(yc). The solution is plotted in the inset of
Fig. 3. Note that �G4 > G3 > G2 > G1 for all values of d1(yc)
satisfying 0  d1(yc)  1. We have verified that any choice of
repulsive bare couplings leads to the same limiting trajectory (see
Supplementary Information).
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Susceptibilities
We now investigate the instabilities of the system by evaluating
the susceptibilities � for various types of order. To analyse the
superconducting instability, we introduce infinitesimal test vertices
corresponding to particle–particle pairing into the action, L = L0+
�L, where L0 is given by equation (1) and
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Here �̃ c is an s-wave order, whereas �̃ a and �̃ b correspond to
order parameters that vary around the Fermi surface as �̃ cos(2')
and �̃ sin(2'), where ' is the angle to the x axis (Fig. 4). Such a
dependence describes d-wave superconducting orders (SCd), as the
gap changes sign four times along the Fermi surface. In 2Dnotation,
the two order parameters �̃ a and �̃ b correspond to dxy and dx2�y2

superconducting orders respectively.
Notably, we find that the s-wave vertex �̃ c, equation (7), has

a negative eigenvalue and is suppressed under renormalization
group flow (equation (5)). This is to be expected, given that we
started out with repulsive microscopic interactions. At the same
time, the d-wave orders �̃ a and �̃ b have the (identical) eigenvalue
g3�g4, whichmay be negative at the bare level but becomes positive
under the renormalization group, indicating an instability in the
d-wave channel. We solve equation (5) for the d-wave orders, by
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Figure 2 | Possible interactions in the patch model. a, Feynman diagrams
representing allowed two-particle scattering processes among different
patches (equation (1)). Solid and dashed lines represent fermions on
different patches, whereas wavy lines represent interactions. b, Pictorial
representation of these scattering processes, superimposed on a contour
plot of the energy dispersion. Each scattering process comes in three
flavours, according to the patches involved. However, it follows by
symmetry that the scattering amplitudes are independent of the patches
involved, and therefore we suppress the flavour labels.

up to quadratic terms about each saddle point. For example, near
pointM1, the tight-bindingmodel37 predicts dispersion ✏k =2⇡2a2t
((�kx)2 �

p
3�kx�ky +O((�k)4)), where t is the nearest-neighbour

hopping, a is the lattice constant and �k= k�kM1 . The chemical
potential value µ = 0 describes a system doped exactly to the
saddle point. We note that whereas the existence of saddle points
is a topological property of the Fermi surface and is robust to
arbitrarily long-range hopping, the Fermi surface nesting is spoilt
by third-neighbour (and higher) hopping effects1,4. Inequivalent
saddle points are connected by a nesting vector Q↵� = e↵ � e�

(Fig. 1). The short-range interaction model, used in our analysis,
is expected to provide a good approximation under the conditions
ofmetallic screening arising due to the states near the Fermi surface.
The screening generally depends on the level of doping relative to
the M point, introducing some uncertainty into the bare values for
the interactions. However, we will show that precise knowledge of
these bare values is not required to determine the final state.

The patch structure of the interactions is restricted by mo-
mentum conservation, which allows only the four interactions in
equation (1). The umklapp interaction g3 is allowed, because it
conserves momentum modulo a reciprocal lattice vector. All four
interactions in equation (1) are marginal at tree level, but acquire
logarithmic corrections in perturbation theory. These logarithmic
corrections come from energy scales E < ⇤, where ⇤ ⇡ t is the
energy scale at which higher order corrections to the disper-
sion become important.

Logarithmic divergences in perturbation theory analysis indicate
that the problem is well suited to study using a renormalization
group technique. The building blocks of the renormalization
group are the susceptibilities in the particle–particle and particle–
hole channels, ⇧pp and ⇧ph, evaluated respectively at momentum
transfer zero and at momentum transfer Q↵ 6=� between points M↵

andM� . Similarly to ref. 34, we have

⇧pp(0)=
⌫0

4
ln

⇤

max(T ,µ)
ln

⇤

T
,

⇧ph(Q↵ 6=�)=
⌫0

4
ln

⇤

max(T ,µ)
ln

⇤

max(T ,µ,t3)

and ⇧ph(0),⇧pp(Q↵ 6=�) = ⌫0 ln(⇤/max(T ,µ)), where ⇤ is our
ultraviolet cutoff (Fig. 1) and T is the temperature. The density of
states at a saddle point is ⌫0 ln(⇤/max(T ,µ)) per spin projection.
The second log factor in ⇧pp(0) arises in a conventional way owing
to the divergence in the Cooper channel. The second log factor in
⇧ph(Q↵ 6=�) arises from nesting of the Fermi surface, and is cut in the
infrared by any term that spoils the nesting, such as third-neighbour
hopping t3 or doping µ (ref. 4). At weak coupling the Cooper log is
large, and we assume that max(t3,µ) ⌧ ⇤ so that the nesting log
is also large. In this limit, ⇧pp(0) and ⇧ph(Q) are parametrically
larger than⇧ph(0) and⇧pp(Q), so that the renormalization group is
dominated by the double log divergent susceptibilities.

Renormalization group equations
The renormalization group equations are obtained by extending
the approach developed for the square lattice problem31 to a
number of patches n > 2. The number of patches matters only
in diagrams with zero net momentum in fermion loops, as it is
only there that we get summation over fermion flavours inside
the loop. The only zero-momentum loop with a log2 divergence
is in the Cooper channel. Moreover, only the g3 interaction
changes the patch label of a Cooper pair, therefore, the number
of patches affects only diagrams where two g3 interactions are
combined in the Cooper channel. With logarithmic accuracy, using
y = ⇧pp(k= 0,E)= (⌫0/4)ln2(⇤/E) as the renormalization group
time, we obtain the �-functions
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Here d1(y) = d⇧ph(Q)/dy ⇡ ⇧ph(Q)/⇧pp(0) is the ‘nesting
parameter’31,34. This quantity equals one in the perfectly nested
limit. For non-perfect nesting, d1(y) has the asymptotic forms
d1(y = 0)= 1, d1(y � 1)= ln|⇤/t3|/py , and interpolates smoothly
in between. Because the renormalization group equations flow to
strong coupling at a finite scale yc, we treat 0 < d1(yc) < 1 as a
parameter in our analysis.

The �-functions, equation (2), reproduce the two-patch renor-
malization group from ref. 31 when we take n = 2 and neglect
subleading O(log) divergent terms (d2,3(y) from ref. 31), and also
reproduce for n = 2 the renormalization group equations for the
Fe-pnictides35. Graphene near the Van Hove singularity, however,
is described by n= 3.

We note from inspection of equation (2) that g1,g2 and g3
must stay positive (repulsive) if they start out positive. This
follows because the �-function for g2 is positive definite, and the
�-functions for g1 and g3 vanish as the respective couplings go
to zero. However, g4 decreases under the renormalization group,
eventually changing sign and becoming negative. As we will see,
g3�g4 becomes large and positive under the renormalization group,
driving an instability to a superconducting phase. However, the
positive g3 coupling penalizes s-wave superconductivity, so pairing
occurs in a higher angularmomentum (d-wave) channel.

We integrate our renormalization group equations with n= 3,
starting from gi = g0 = 0.1 (these values are chosen for illustration)
and modelling d1 as d1(y) = 1/

p
1+y . The results are plotted in

Fig. 3. Similar results are obtained if we just treat d1 as a constant.
The couplings diverge at a scale yc ⇠1/g0, corresponding to a critical
temperature and ordering energy scale

Tc,E0 ⇠⇤exp(�A/
p

g0⌫0) (3)
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Figure 4. (Color online). fRG phase diagram from Ref. [45]. The main plot shows the
instability scale as a function of doping level with additional longer-ranged hoppings
included. At and around the van Hove singularity (orange area), chiral d-wave pairing
competes with a spin-density-wave (SDW). The left inset picture shows the flow of
various interaction channels, indicating a dominant chiral d-wave instability at the van
Hove singularity. Away from the van Hove singularity (blue area), the critical scale
drops and whether the chiral d-wave or f -wave superconductivity instability is preferred
depends on the precise decay profile of the interaction. The right inset picture shows
the flow of the interaction channels in such a case. (Reprinted figure by permission
from M. L. Kiesel et al., Phys. Rev. B 86, 020507 (2012), [45]. Copyright c

� (2012)
by the American Physical Society.)

possible chiral d-wave superconductivity in graphene doped to the van Hove singularity

by analyzing the minimal model for this situation. The picture has been worked out

further in subsequent publications, showing that there should be a first-order transition

between the potential spin-density-wave and chiral d-wave superconducting states [101],

and also embedding the special case of graphene into a broader picture for fermions on

hexagonal lattices [38].

Kiesel et al. [45] very recently analyzed the same situation using N -patch fRG. This

approach is more flexible and also allows the study of doping levels away from the van

Hove point, as well as a systematically investigation of how changes in the interaction

profile a↵ect the result. Furthermore, the model parameters were here adapted from ab-

initio results and both longer-ranged hopping parameters and longer-ranged interactions

were considered as well. A well-rounded qualitative picture should thus be obtainable.

Again, chiral d-wave pairing was found to be the dominant pairing instability near

the van Hove filling, as shown in the phase diagram in Figure 4, taken from their

work. At the van Hove filling chiral d-wave superconductivity was found to win over

the spin-density-wave state, especially for ’realistic’ model parameters, at least if one

dares to flow long enough to get close to the instability. Moreover, finite longer range

hopping parameters somewhat distort the perfect hexagon of the Fermi surface at the

van Hove filling. This decreases the degree of nesting and hence the spin-density-wave

tendencies, as visible in Figure 5. This further strengthens the chiral d-wave pairing

in its competition with the spin-density-wave state. The pairing scales obtained in this

work was in the range 10�4 of the hopping parameter, i.e. compatible with a transition
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(a)

(b)

(c)

Figure 5. (Color online). (a) Band structure of the honeycomb lattice with nearest-
neighbor hopping only (red) and additional smaller second- and third-nearest neighbor
hoppings (black). (b) The Brillouin zone displaying the Fermi surface near the van
Hove point (the dashed blue horizontal line in (a) indicates the chemical potential at
the van Hove point). The 96 patches used in the fRG and the nesting vectors are
indicated as well. (c) Density of states for both band structures in (a). (Reprinted
figure by permission from M. L. Kiesel et al., Phys. Rev. B 86, 020507 (2012), [45].
Copyright c

� (2012) by the American Physical Society.)

temperature of a few Kelvins. Of course impurities may very well become a determining

factor for the true experimental T
c

, an e↵ect not considered in this work.

A third very recent fRG study looking for chiral pairing on the honeycomb lattice is

from Wang et al. [44]. They used the so-called singular-mode fRG, which is based on the

same flow equations as in the previously mentioned N -patch fRG, but uses a di↵erent

representation for the electronic interactions. Rather than discretizing the wave vector

dependence around the Fermi surface and working with a coupling function that depends

on three wave vectors, singular-mode fRG uses a channel decomposition (see also [97])

and form factors to express the wave vector dependence of the coupling function. This

way a better resolution of the modes away from the Fermi surface and of the long-

wavelength ordering tendencies is obtained. Even with this approach, the competition

between spin-density-wave and chiral d-wave pairing was clearly reproduced. The

authors interpret their results at the van Hove filling as dominance of the spin-density-

wave order, and only away from the van Hove filling did they find a dominating chiral

d-wave state. Regarding the order of the leading instabilities for this situation one

has to say, however, that these di↵erences are well in the uncertainty range of data

interpretations. In addition, as mentioned above, the details of the competition will

definitely depend on model details such as distance-dependence of the hopping, fine-

tuning the degree of the nesting, and the interaction parameters. Still, all RG studies

of the van Hove situation share the same features that the spin-density-wave tendency

grow first and at larger scales, while chiral d-wave pairing develops later in the flow, but

rises more steeply in the end. So, drawing distinction lines in tentative phase diagrams

heavily depends on how long one trusts the RG flows, and also on the values of the

initial interactions.
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FIG. 1. (Color online). Schematic phase diagram displaying
the critical instability scale ⇤

c

⇠ T

c

as a function of dop-
ing. At the van Hove singularity (VHS, light shaded (orange)
area), d + id competes with spin density wave (SDW) (left
flow picture: dominant d + id instability for U0 = 10eV and
the band structure in [5]). Away from the VHS (dark shaded
(blue) area), ⇤

c

drops and whether the d+id or f -wave SC in-
stability is preferred depends on the long-rangedness of inter-
action (right flow picture: U1/U0 = 0.45 and U2/U0 = 0.15).

investigate in detail how di↵erent band structure param-
eters a↵ect the phase diagram. We find that rather small
variations of the longer range hopping parameters such as
next nearest (t2) and next-next-nearest (t3) hopping can
shift the position of perfect Fermi surface nesting against
the VHS [Fig. 2], which significantly influences the com-
petition between magnetism and SC. Moreover, in par-
ticular away from the exact VHS, the reduced screening
of the Coulomb interaction does not justify the assump-
tion of a local Hubbard model description. For this case,
we find that only a small fraction of longer-ranged Hub-
bard interaction [21] can significantly change the phase
diagram, as CDW fluctuations become more competitive
to SDW fluctuations, and a triplet SC phase can appear.
In particular, we study how the Cooper pairing in the
di↵erent SC phases responds to di↵erently long-ranged
Hubbard interactions. Our results suggest that in ex-
periment, modifications of the band structure as well as
changing the dielectric environment of the graphene sam-
ple would enable the realization of di↵erent many-body
states and possible phase transitions between them.

Model. We consider the ⇡ band structure of graphene
approximated by a tight binding model including up to
3rd nearest neighbors on the hexagonal lattice:
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electron annihilation operator of spin � =", # at site i.

FIG. 2. (Color online). (a) Band structure of graphene once
for t1 = 2.8eV (red) and t1 = 2.8, t2 = 0.7, t3 = 0.02eV
(black). (b) Brillouin zone displaying the Fermi surface near
the van Hove point (dashed blue level in (a), 96 patches used
in the FRG and the nesting vector, and the partial nesting
vectors. (c) Density of states for both band structures in (a).
The inset show the position shift of Fermi surface nesting
(dashed vertical lines) versus the VHS peak.

The resulting band structure is a two band model due
to two atoms per unit cell [Fig. 2]. There are certain
uncertainties about the most appropriate tight binding fit
for graphene, in particular as it concerns the longer range
hybridization integrals [1, 22]. For dominant t1, the band
structure features a van Hove singularity (VHS) at x =
3/8, 5/8. Constraining ourselves to the electron-doped
case, the x = 5/8 electron-like Fermi surface is shown
in Fig. 2b. As depicted, this is the regime of largely
enhanced density of states which we investigate in the
following. For t2 = t3 = 0 [red curve in Fig. 2], the VHS
coincides with the partial nesting of di↵erent sections of
the Fermi surface for Q = (0, 2⇡/

p
3), (⇡,⇡/

p
3), and

(⇡,�⇡/
p
3). For a realistic band structure estimate with

finite t2 and t3 [5] [black curve in Fig. 2], this gives a
relevant shift of the perfect nesting position versus the
VHS as well as density of states at the VHS, and a↵ects
the many-body phase found there.
We assume Coulomb interactions represented by a long

range Hubbard Hamiltonian [21]
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where U0...2 parametrizes the Coulomb repulsion scale
from onsite to the second nearest neighbor interaction.
It depends on the density of states how strongly the
Coulomb interaction is screened. At the VHS, we as-
sume perfect screening and consider U0 only, while away
from the VHS, we investigate the phenomenology of tak-

• Full band structure & realistic model parameters:

Kiesel, Platt, Hanke, Abanin, Thomale, Phys. Rev. B 86, 020507 (2012)	



Wang et al, Phys. Rev. B 85, 035414 (2012)

• Interaction terms:

• longer-range hoppings decrease degree of nesting	



• dSC wins	



• with realistic parameters: Tc ~ a few K



Conclusions & Outlook

• Phase transitions and criticality @Dirac point 	



‣ precision estimates - dynamical bosonization, higher-derivative terms? multicriticality?	



• Phase transitions and criticality @VHS - realization of chiral d-wave superconductor?	



‣ coupling to the lattice	



‣ self-energy effects	



‣ van Hove situation difficult to assess by other methods (finite-size, sign problems)	



‣ collective fluctuations, cf. Krahl, Friederich, Wetterich on Hubbard model	



• Methods & related materials:	



‣ spin-SU(2) - extend scheme to include SOC 	



‣ multiorbital models

➡ talks by D. Scherer & G. Schober

➡ talk by C. Platt

Graphene allows for beautiful/useful/complex/
unprecedented/exotic theory!


