FRG approaches to graphene - an overview

Michael M. Scherer

Institute for Theoretical Physics, University of Heidelberg

September 24, 2014, ERG 2014, Lefkada Island, Greece

Outline

- Part I: Graphene basics
- Part II: Instabilities and phase transitions from (F)RG
- undoped graphene, Dirac electrons
- doped graphene @van-Hove singularity
- Conclusions \& Outlook

Real space structure

- Graphene: flat single layer of C -atoms in 2D hexagonal lattice
- sp 2-Hybrid-orbitals of C-atoms $\rightarrow \sigma$-bonds away from ϵ_{F}

- Conduction \& valence $\mathrm{e}^{-}: \pi$-bonds of p_{z}-orbitals

- Van der Waal's bonds between layers

In the lab

Fun facts

- Density: $0.77 \mathrm{mg} / \mathrm{m}^{2}$
- even the smallest gas atom (He) cannot pass through it
- Optical transparency:
- Absorbs only 2.3% of the visible light intensity
- Strength: breaking strength $=42 \mathrm{~N} / \mathrm{m}$.
- Thin film of steel $(0.335 \mathrm{~nm})$ has 2D breaking strength $\sim 0.3 \mathrm{~N} / \mathrm{m}$
- Electrical conductivity: as well as copper
- 2 D sheet conductivity $\sigma=\mathrm{e} \mathrm{n} \mu$
- high electron mobility μ, weakly depends on T even at $\sim 300 \mathrm{~K}$
- mobility remains high even in doped devices \rightarrow in contrast to bulk semiconductors

Fun facts

- Density: $0.77 \mathrm{mg} / \mathrm{m}^{2}$
- even the smallest gas atom (He) cannot pass through it
- Optical transparency:
- Absorbs only 2.3% of the visible light intensity
- Strength: breaking strength $=42 \mathrm{~N} / \mathrm{m}$.
- Thin film of steel $(0.335 \mathrm{~nm})$ has 2D breaking strength $\sim 0.3 \mathrm{~N} / \mathrm{m}$

- Electrical conductivity: as well as copper
- 2 D sheet conductivity $\sigma=\mathrm{e} \mathrm{n} \mu$
- high electron mobility μ, weakly depends on T even at $\sim 300 \mathrm{~K}$
- mobility remains high even in doped devices \rightarrow in contrast to bulk semiconductors

Tight-binding model

$$
\begin{aligned}
H_{0}= & -t \sum_{\langle i, j\rangle, \sigma}\left(a_{i, \sigma}^{\dagger} b_{j, \sigma}+\text { H.c. }\right) \\
& -t^{\prime} \sum_{\langle\langle i, j\rangle\rangle, \sigma}\left(a_{i, \sigma}^{\dagger} a_{j, \sigma}+b_{i, \sigma}^{\dagger} b_{j, \sigma}+\text { H.c. }\right)
\end{aligned}
$$

π band structure of graphene: $E_{ \pm}(\mathbf{k})= \pm t \sqrt{3+f(\mathbf{k})}-t^{\prime} f(\mathbf{k}), \quad f(\mathbf{k})=\sum_{i=1}^{3} e^{i \delta_{i} \cdot \mathbf{k}}$

Tight-binding model

$$
\begin{aligned}
H_{0}= & -t \sum_{\langle i, j\rangle, \sigma}\left(a_{i, \sigma}^{\dagger} b_{j, \sigma}+\text { H.c. }\right) \\
& -t^{\prime} \sum_{\langle\langle i, j\rangle\rangle, \sigma}\left(a_{i, \sigma}^{\dagger} a_{j, \sigma}+b_{i, \sigma}^{\dagger} b_{j, \sigma}+\text { H.c. }\right)
\end{aligned}
$$

π band structure of graphene: $\quad E_{ \pm}(\mathbf{k})= \pm t \sqrt{3+f(\mathbf{k})}-t^{\prime} f(\mathbf{k}), \quad f(\mathbf{k})=\sum_{i=1}^{3} e^{i \delta_{i} \cdot \mathbf{k}}$

- e.g. from ab initio calculations: $t=2.8 \mathrm{eV}, t^{\prime}=-0.2 t$

- adjust Fermi level by chemical potential \rightarrow doping

Dirac fermions in undoped graphene

- Expand operators in Hamiltonian around Fermi level $\rightarrow K$, K^{\prime} points
- 2D massless Dirac equation (around K point):

$$
-i v_{F} \vec{\sigma} \cdot \nabla \psi(\vec{r})=E \psi(\vec{r})
$$

- near Dirac point electrons have well-defined chirality
include K' point
\Rightarrow two copies of massless Dirac-like Hamiltonian
- Unprecedented phenomena in condensed matter:
- half integer quantum Hall effect

- Klein paradox and suppression of backscattering

Density of states

- Density of states: $\rho(\epsilon)$

- close to Dirac point: $\quad \rho(\epsilon) \propto|\epsilon|$
- van-Hove singularities @ finite doping \rightarrow logarithmic divergence of $\rho(\epsilon)$

Density of states

- Density of states: $\rho(\epsilon)$

BKiesel et al, Phys. Rev. B 86, 020507 (2012)

- close to Dirac point: $\quad \rho(\epsilon) \propto|\epsilon|$
- van-Hove singularities @ finite doping \rightarrow logarithmic divergence of $\rho(\epsilon)$
- Graphene @ neutrality point:
- Dirac fermions
- nesting
- vanishing DOS

- Graphene @ van-Hove singularity:
- saddle-point dispersion
- nesting
- diverging DOS

Interactions \& phase transitions

$$
\begin{aligned}
& H_{\mathrm{int}}=U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}+V_{1} \sum_{\langle i, j\rangle, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{j, \sigma^{\prime}} \\
& +V_{2} \sum_{\langle\langle i, j\rangle\rangle, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{j, \sigma^{\prime}}+V_{3} \sum_{\langle\langle\langle i, j\rangle\rangle\rangle, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{j, \sigma^{\prime}}
\end{aligned}
$$

- Undoped graphene \rightarrow interactions can induce phase transitions:
* Dirac fermions have vanishing DOS at Fermi level
* Stoner-type criterion \rightarrow critical interaction strength required
* Experimental data: Graphene below critical strength

- Graphene @ VHS \rightarrow interactions can induce phase transitions:
* nesting: ph-channel diverges @ low T
* also: pp-channel diverges @ low T
\Rightarrow competing orders

(F)RG aspects of undoped graphene

Symmetries \& Fierz transformations

- Minimal description of i.a. electrons in graphene @ low energies?
- Symmetries of continuum interacting theory?
- What kinds of order expected? Nature of phase transitions?
- Start with linearized non-interacting Lagrangian for Dirac electrons: $L_{0}=\bar{\Psi}(\vec{x}, \tau) \gamma_{\mu} \partial_{\mu} \Psi(\vec{x}, \tau)$
- Interactions (quartic, local,,\ldots and spinless): $\quad L_{\text {int }}=\left(\Psi^{\dagger}(\vec{x}, \tau) M_{1} \Psi(\vec{x}, \tau)\right)\left(\Psi^{\dagger}(\vec{x}, \tau) M_{2} \Psi(\vec{x}, \tau)\right)$

Symmetries \& Fierz transformations

- Minimal description of i.a. electrons in graphene @ low energies?
- Symmetries of continuum interacting theory?
- What kinds of order expected? Nature of phase transitions?
- Start with linearized non-interacting Lagrangian for Dirac electrons: $L_{0}=\bar{\Psi}(\vec{x}, \tau) \gamma_{\mu} \partial_{\mu} \Psi(\vec{x}, \tau)$
- Interactions (quartic, local,... and spinless): $\quad L_{i n t}=\left(\Psi^{\dagger}(\vec{x}, \tau) M_{1} \Psi(\vec{x}, \tau)\right)\left(\Psi^{\dagger}(\vec{x}, \tau) M_{2} \Psi(\vec{x}, \tau)\right)$
\Rightarrow I 36 independent couplings in spinless case!
- Honeycomb lattice symmetries help to reduce to 15 independent couplings
- Further reduction by Fierz identities!
$\Rightarrow 6$ independent couplings in spinless case!
BHerbut, Phys. Rev. Lett. 97, I4640I (2006)
Berbut et al., Phys. Rev. B 79, 085 I I6 (2009)

Symmetries, Fierz transformations \& order parameters

- Reduction of independent couplings can be pushed further
- near quantum critical point additional symmetries from non-interacting theory restored...
- minimal low-energy description of i.a. spinless honeycomb electrons:

Symmetries:

- Reflection
- Translation
- Time-reversal
- Rotations
- Lorentz
- Chiral

FRG phase transitions \& critical behavior

- Situation with spin works similarly - e.g. obtain AF-SDW order and CDW order
- Introduce order parameter fields via Hubbard-Stratonovich transformation
order parameter field Z_{2} or SO (3)

$$
\begin{array}{r}
\Gamma_{k}=\int \mathrm{d}^{D} x\left[Z_{\Psi, k} \bar{\Psi}\left(\mathbb{1}_{2} \otimes \gamma_{\mu}\right) \partial_{\mu} \Psi-\frac{1}{2} Z_{\phi, k} \phi_{a} \partial_{\mu}^{2} \phi_{a}\right. \\
+ \\
\left.+U_{k}(\rho)+\bar{g}_{k} \phi_{a} \bar{\Psi}\left(\sigma_{a} \otimes \mathbb{1}_{4}\right) \Psi\right]
\end{array}
$$

FRG phase transitions \& critical behavior

- Situation with spin works similarly - e.g. obtain AF-SDW order and CDW order
- Introduce order parameter fields via Hubbard-Stratonovich transformation
order parameter field Z_{2} or SO (3)

$$
\begin{array}{r}
\Gamma_{k}=\int \mathrm{d}^{D} x\left[Z_{\Psi, k} \bar{\Psi}\left(\mathbb{1}_{2} \otimes \gamma_{\mu}\right) \partial_{\mu} \Psi-\frac{1}{2} Z_{\phi, k} \phi_{a} \partial_{\mu}^{2} \phi_{a}\right. \\
\left.+U_{k}(\rho)+\bar{g}_{k} \phi_{a} \bar{\Psi}\left(\sigma_{a} \otimes \mathbb{1}_{4}\right) \Psi\right]
\end{array}
$$

\& have fun:
$\partial_{t} \Gamma_{k}=\frac{1}{2} \mathrm{~S} \operatorname{Tr}\left[\partial_{t} \mathrm{R}_{k}\left(\Gamma_{k}^{(2)}+\mathrm{R}_{k}\right)^{-1}\right]$

- quantify critical behaviour at quantum phase transition $\left(Z_{2}\right)$:

	$1 / \nu$	η_{ϕ}	η_{Ψ}
FRG [LPA', $\left.\mathcal{O}\left(\tilde{\rho}^{6}\right), \mathrm{R}_{k}^{\text {lin }}\right]$	0.982	0.760	0.032
FRG [LPA', $\left.\mathcal{O}\left(\tilde{\rho}^{6}\right), \mathrm{R}_{k}^{\text {sc }}\right]$	0.978	0.767	0.033
FRG [LPA', full $u(\tilde{\rho}), \mathrm{R}_{k}^{\text {lin }]^{21}}$	0.982	0.756	0.032
$1 / N_{\mathrm{f}}$-expansion $(2 \mathrm{nd} / 3 \text { rd order })^{34,35}$	0.962^{*}	0.776	0.044
$(2+\epsilon)$-expansion $(3 \text { rd order })^{28}$	0.764	0.602	0.081
$(4-\epsilon)$-expansion $(2 \text { nd order })^{13,33}$	1.055	0.695	0.065
Polynomial interpolation $P_{2,2}$	0.995	0.753	0.034
Polynomial interpolation $P_{3,2}$	0.949	0.716	0.041
Monte-Carlo simulations ${ }^{33 \dagger}$	$1.00(4)$	$0.754(8)$	-

- Graphene:AFM-Mott transition
- "chiral Heisenberg universality class"
\Rightarrow talk by L. Janssen

Janssen \& Herbut, Phys. Rev. B 89, 205403 (2014)
Janssen \& Gies, Phys. Rev. D 86, 105007 (2012)
Mesterhazy et al., Phys. Rev. B 86, 24543I (2012)

N-Patch FRG scheme

- Take into account full band structure
- Modified bare propagator with IR cutoff:

$$
G_{0}^{\Lambda}\left(k_{0}, \mathbf{k}\right)=\frac{\theta^{\Lambda}(\mathbf{k})}{i k_{0}-\xi_{\mathbf{k}}}
$$

- Vertex expansion (with momentum dependence):

exact RG equation

Salmhofer \& Honerkamp, Prog. Theor. Phys. 105 (2001)
B Metzner et al., Rev. Mod. Phys. 84, 299 (2012)

- Neglect 6-point and higher vertices
- No self-energy feedback

(a)

(b)

(c)

N-Patch FRG scheme

Density waves on the honeycomb lattice

$$
\begin{aligned}
H_{\mathrm{int}}= & U \sum_{i} n_{i, \uparrow} n_{i, \downarrow}+V_{1} \sum_{\langle i, j\rangle, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{j, \sigma^{\prime}} \\
& +V_{2} \sum_{\langle\langle i, j\rangle\rangle, \sigma, \sigma^{\prime}} n_{i, \sigma} n_{j, \sigma^{\prime}}
\end{aligned}
$$

d) $\quad k_{3}=1(A), k_{4} @ B$

$\sim \sum_{\vec{q}} J_{\vec{q}}^{b, b^{\prime}} \vec{S}_{\vec{q}}^{b} \cdot \vec{S}_{-\vec{q}}^{b^{\prime}}$
Honerkamp, Phys. Rev. Lett. I00, I46404 (2008)
Raghu et al., Phys. Rev. Lett. I00, I5640I (2008)

- Phase diagram:

Phonon-induced electron-electron interactions

- Lattice vibrations (Raman spectroscopy)

A. C. Ferrari et al. PRL 97 (2006)

C. Park et al. NL 8 (2008)
- Modified hopping $t \rightarrow t+d t$
\rightarrow EPC coupling induces Kekule instability:

- Phase diagram with short-ranged Coulomb i.a.:

$$
\begin{aligned}
\{U / t & \left., V_{1} / t, V_{2} / t\right\} \approx\{3.3,2.0 .1 .5\} \\
& \rightarrow c\left\{U / t, V_{1} / t, V_{2} / t\right\}
\end{aligned}
$$

talk by L. Classen

Critical scales of honeycomb stacks

- Critical scales with rescaled $a b$ initio interaction parameters:

- ABC trilayer most prone to instabilities, critical scale drops quickly when $U<U_{c}$,Singlelayer
- Ab initio parameters put system close to QSH/AFM phase boundary
- MMS, Uebelacker, Honerkamp, Phys. Rev. B 85, 235408 (2012)

MMS, Uebelacker, DDScherer, Honerkamp, Phys. Rev. B 86, I554I5 (20I2)
(F)RG aspects of graphene @ VHS

RG for graphene @VHS - g-ology

$\mathcal{L}=\sum_{\alpha=1}^{3} \psi_{\alpha}^{\dagger}\left(\partial_{\tau}-\epsilon_{\mathbf{k}}+\mu\right) \psi_{\alpha}-\frac{1}{2} g_{4} \psi_{\alpha}^{\dagger} \psi_{\alpha}^{\dagger} \psi_{\alpha} \psi_{\alpha}$

$$
-\sum_{\alpha \neq \beta} \frac{1}{2}\left[g_{1} \psi_{\alpha}^{\dagger} \psi_{\beta}^{\dagger} \psi_{\alpha} \psi_{\beta}+g_{2} \psi_{\alpha}^{\dagger} \psi_{\beta}^{\dagger} \psi_{\beta} \psi_{\alpha}+g_{3} \psi_{\alpha}^{\dagger} \psi_{\alpha}^{\dagger} \psi_{\beta} \psi_{\beta}\right]
$$

- RG equations:

$$
\begin{gathered}
\frac{\mathrm{d} g_{1}}{\mathrm{~d} y}=2 d_{1} g_{1}\left(g_{2}-g_{1}\right), \quad \frac{\mathrm{d} g_{2}}{\mathrm{~d} y}=d_{1}\left(g_{2}^{2}+g_{3}^{2}\right) \\
\frac{\mathrm{d} g_{3}}{\mathrm{~d} y}=-(n-2) g_{3}^{2}-2 g_{3} g_{4}+2 d_{1} g_{3}\left(2 g_{2}-g_{1}\right) \\
\frac{\mathrm{d} g_{4}}{\mathrm{~d} y}=-(n-1) g_{3}^{2}-g_{4}^{2}
\end{gathered}
$$

- reproduce two-patch RG for $n=2$
- Graphene atVHS needs $\mathrm{n}=3$
a

Nandkishore, Levitov, Chubukov, Nature Physics 8, I 58 (2012)
Furukawa, Rice, Salmhofer, Phys. Rev. Lett. 8I, 3195-3198 (1998)

RG for graphene @VHS - g-ology

- Susceptiblities (introduce test vertices)

$$
\delta \mathcal{L}=\sum_{\alpha=1}^{3} \tilde{\Delta}_{\alpha} \psi_{\alpha, \uparrow}^{\dagger} \psi_{\alpha, \downarrow}^{\dagger}+\tilde{\Delta}_{\alpha}^{*} \psi_{\alpha, \uparrow} \psi_{\alpha, \downarrow}
$$

- d-wave SC susceptibility

$$
\chi_{\mathrm{dSC}}(y) \sim\left(y_{c}-y\right)^{-1.5}
$$

- AF-SDW susceptibility @perfect nesting

$$
\chi_{\mathrm{SDW}}(y) \sim\left(y_{c}-y\right)^{-1}
$$

- Close competition between SDW and dSC
- dSC is leading instability for all values of nesting
m in contrast to square lattice (SDW@perfect nesting)

FRG for graphene @VHS - N-Patch FRG

- Full band structure \& realistic model parameters:

$$
\begin{aligned}
H_{0}= & {\left[t_{1} \sum_{\langle i, j\rangle} \sum_{\sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+t_{2} \sum_{\langle\langle i, j\rangle\rangle} \sum_{\sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}\right.} \\
& \left.+t_{3} \sum_{\langle\langle\langle i, j\rangle\rangle\rangle} \sum_{\sigma} c_{i, \sigma}^{\dagger} c_{j, \sigma}+\text { h.c. }\right]-\mu n,
\end{aligned}
$$

- Interaction terms:

	Graphene		Graphite	
	Bare	cRPA	Bare	cRPA
$U_{00}^{A \text { or } B}(\mathrm{eV})$	17.0	9.3	$17.5,17.7$	$8.0,8.1$
$U_{01}(\mathrm{eV})$	8.5	5.5	8.6	3.9
$U_{02}^{A \text { or } B}(\mathrm{eV})$	5.4	4.1	$5.4,5.4$	$2.4,2.4$
$U_{03}(\mathrm{eV})$	4.7	3.6	4.7	1.9

Wehling et al, Phys. Rev. Lett. I06, 236805 (201I)

- longer-range hoppings decrease degree of nesting
-dSC wins
- with realistic parameters: $\mathrm{T}_{\mathrm{c}} \sim$ a few K

(c)

BKiesel, Platt, Hanke, Abanin, Thomale, Phys. Rev. B 86, 020507 (2012) WWang et al, Phys. Rev. B 85, 035414 (20I2)

Conclusions \& Outlook

Graphene allows for beautiful/useful/complex/ unprecedented/exotic theory!

- Phase transitions and criticality @Dirac point
- precision estimates - dynamical bosonization, higher-derivative terms? multicriticality?
- Phase transitions and criticality @VHS - realization of chiral d-wave superconductor?
- coupling to the lattice
- self-energy effects
- van Hove situation difficult to assess by other methods (finite-size, sign problems)
- collective fluctuations, cf. Krahl, Friederich,Wetterich on Hubbard model
- Methods \& related materials:
- spin-SU(2) - extend scheme to include SOC \Rightarrow talks by D. Scherer \& G. Schober
- multiorbital models \Rightarrow talk by C. Platt

