FRG approaches to graphene - an overview

Michael M. Scherer

Institute for Theoretical Physics, University of Heidelberg

September 24, 2014, ERG 2014, Lefkada Island, Greece

Outline

- Part I: Graphene basics
- Part II: Instabilities and phase transitions from (F)RG
 - undoped graphene, Dirac electrons
 - doped graphene @van-Hove singularity
- Conclusions & Outlook

In the lab

Fun facts

• **Density**: 0.77mg/m²

- ▶ even the smallest gas atom (He) cannot pass through it
- Optical transparency:
 - ▶ Absorbs only 2.3% of the visible light intensity
- **Strength**: breaking strength=42N/m.
 - Thin film of steel (0.335nm) has 2D breaking strength ~0.3N/m
- Electrical conductivity: as well as copper
 - ► 2D sheet conductivity $\sigma = e n \mu$
 - high electron mobility μ , weakly depends on T even at ~ 300K
 - mobility remains high even in doped devices \rightarrow in contrast to bulk semiconductors

Fun facts

• **Density**: 0.77mg/m²

- ▶ even the smallest gas atom (He) cannot pass through it
- Optical transparency:
 - Absorbs only 2.3% of the visible light intensity
- **Strength**: breaking strength=42N/m.
 - ▶ Thin film of steel (0.335nm) has 2D breaking strength ~0.3N/m
- Electrical conductivity: as well as copper
 - ► 2D sheet conductivity $\sigma = e n \mu$
 - high electron mobility μ , weakly depends on T even at ~ 300K
 - mobility remains high even in doped devices \rightarrow in contrast to bulk semiconductors

Tight-binding model

Tight-binding model

 $-2 k_y$

▶ adjust Fermi level by chemical potential → doping

0

 k_x

2

Dirac fermions in undoped graphene

- Expand operators in Hamiltonian around Fermi level \rightarrow K, K' points
 - > 2D massless Dirac equation (around K point):

$$-iv_F\vec{\sigma}\cdot\nabla\psi(\vec{r}) = E\psi(\vec{r})$$

In the image of the image of

include K' point

two copies of massless Dirac-like Hamiltonian

- Unprecedented phenomena in condensed matter:
 - half integer quantum Hall effect
 - Klein paradox and suppression of backscattering

© Castro Neto et al, Rev. Mod. Phys. 81, 109 (2009)

Density of states

• Density of states: $\rho(\epsilon)$

- ▶ close to Dirac point: $ho(\epsilon) \propto |\epsilon|$
- ▶ van-Hove singularities @ finite doping → logarithmic divergence of $\rho(\epsilon)$

Density of states

- Density of states: $\rho(\epsilon)$

⁽⁶⁾ Kiesel et al, Phys. Rev. B **86**, 020507 (2012)

- \blacktriangleright close to Dirac point: $\left. \rho(\epsilon) \propto |\epsilon| \right.$
- ▶ van-Hove singularities @ finite doping → logarithmic divergence of $\rho(\epsilon)$

Interactions & phase transitions

		Graphene		Graphite	
		Bare	cRPA	Bare	cRPA
	$U_{00}^{A \text{ or } B}$ (eV)	17.0	9.3	17.5, 17.7	8.0, 8.1
	U_{01} (eV)	8.5	5.5	8.6	3.9
/	$U_{02}^{A \text{ or } B}$ (eV)	5.4	4.1	5.4, 5.4	2.4, 2.4
	$U_{03}^{0.2}$ (eV)	4.7	3.6	4.7	1.9

Wehling et al, Phys. Rev. Lett. **106**, 236805 (2011)

• Undoped graphene \rightarrow interactions can induce phase transitions:

* Dirac fermions have vanishing DOS at Fermi level

* Stoner-type criterion \rightarrow critical interaction strength required

* Experimental data: Graphene below critical strength

• Graphene @VHS \rightarrow interactions can induce phase transitions:

* nesting: ph-channel diverges @ low T

*also:pp-channel diverges @ low T

(F)RG aspects of undoped graphene

Symmetries & Fierz transformations

- Minimal description of i.a. electrons in graphene @ low energies?
- Symmetries of continuum interacting theory?
- What kinds of order expected? Nature of phase transitions?

• Start with linearized non-interacting Lagrangian for Dirac electrons: $L_0 = \bar{\Psi}(\vec{x}, \tau) \gamma_\mu \partial_\mu \Psi(\vec{x}, \tau)$

• Interactions (quartic, local,... and spinless): $L_{int} = (\Psi^{\dagger}(\vec{x},\tau)M_1\Psi(\vec{x},\tau))(\Psi^{\dagger}(\vec{x},\tau)M_2\Psi(\vec{x},\tau))$

4d hermitian matrices

Werbut, Phys. Rev. Lett. **97**, 146401 (2006)

Werbut et al., Phys. Rev. B **79**, 085116 (2009)

Symmetries & Fierz transformations

- Minimal description of i.a. electrons in graphene @ low energies?
- Symmetries of continuum interacting theory?
 What kinds of order expected? Nature of phase transitions?

• Start with linearized non-interacting Lagrangian for Dirac electrons: $L_0 = \bar{\Psi}(\vec{x},\tau)\gamma_\mu\partial_\mu\Psi(\vec{x},\tau)$

• Interactions (quartic, local,... and spinless): $L_{int} = (\Psi^{\dagger}(\vec{x},\tau)M_1\Psi(\vec{x},\tau))(\Psi^{\dagger}(\vec{x},\tau)M_2\Psi(\vec{x},\tau))$

4d hermitian matrices

136 independent couplings in spinless case!

- Honeycomb lattice symmetries help to reduce to 15 independent couplings
- Further reduction by Fierz identities!

6 independent couplings in spinless case!

- ⁽⁶⁾ Herbut, Phys. Rev. Lett. **97**, 146401 (2006)
- Werbut et al., Phys. Rev. B **79**, 085116 (2009)

Symmetries, Fierz transformations & order parameters

- Reduction of independent couplings can be pushed further
 - ▶ near quantum critical point additional symmetries from non-interacting theory restored...
 - minimal low-energy description of i.a. spinless honeycomb electrons:

Symmetries:

- Reflection
- Translation

Time-reversal

Rotations

Lorentz

Chiral

$$L = L_0 + g_{D2} (\bar{\Psi} \gamma_{35} \Psi)^2 + g_{C1} (\bar{\Psi} \Psi)^2$$

order parameter: QAH

order parameter: CDW

^{(§} Herbut, Phys. Rev. Lett. **97**, 146401 (2006)

Werbut et al., Phys. Rev. B **79**, 085116 (2009)

FRG phase transitions & critical behavior

- Situation with spin works similarly e.g. obtain AF-SDW order and CDW order
- Introduce order parameter fields via Hubbard-Stratonovich transformation

order parameter field Z₂ or SO(3)

$$\Gamma_{k} = \int d^{D}x \bigg[Z_{\Psi,k} \bar{\Psi} \left(\mathbb{1}_{2} \otimes \gamma_{\mu} \right) \partial_{\mu} \Psi - \frac{1}{2} Z_{\phi,k} \phi_{a} \partial_{\mu}^{2} \phi_{a} + U_{k}(\rho) + \bar{g}_{k} \phi_{a} \bar{\Psi} \left(\sigma_{a} \otimes \mathbb{1}_{4} \right) \Psi \bigg],$$

- § Janssen & Herbut, Phys. Rev. B **89**, 205403 (2014)
- § Janssen & Gies, Phys. Rev. D 86,105007 (2012)
- Mesterhazy et al., Phys. Rev. B **86**, 245431 (2012)

FRG phase transitions & critical behavior

- Situation with spin works similarly e.g. obtain AF-SDW order and CDW order
- Introduce order parameter fields via Hubbard-Stratonovich transformation

• quantify critical behaviour at quantum phase transition (Z_2) :

	1/ u	η_{ϕ}	η_{Ψ}
FRG [LPA', $\mathcal{O}(\tilde{\rho}^6)$, $\mathbf{R}_k^{\text{lin}}$]	0.982	0.760	0.032
FRG [LPA', $\mathcal{O}(\tilde{\rho}^6)$, $\mathbf{R}_k^{\mathrm{sc}}$]	0.978	0.767	0.033
FRG [LPA', full $u(\tilde{\rho}), \mathbf{R}_k^{\text{lin}}$] ²¹	0.982	0.756	0.032
$1/N_{\rm f}$ -expansion $(2{\rm nd}/3{\rm rd} {\rm ~order})^{34,35}$	0.962^{*}	0.776	0.044
$(2 + \epsilon)$ -expansion (3rd order) ²⁸	0.764	0.602	0.081
$(4 - \epsilon)$ -expansion (2nd order) ^{13,33}	1.055	0.695	0.065
Polynomial interpolation $P_{2,2}$	0.995	0.753	0.034
Polynomial interpolation $P_{3,2}$	0.949	0.716	0.041
Monte-Carlo simulations ^{33†}	1.00(4)	0.754(8)	

- Graphene: AFM-Mott transition
- "chiral Heisenberg universality class"
 - talk by L. Janssen

Janssen & Herbut, Phys. Rev. B 89, 205403 (2014)
 Janssen & Gies, Phys. Rev. D 86,105007 (2012)

Mesterhazy et al., Phys. Rev. B 86, 245431 (2012)

N-Patch FRG scheme

- Take into account full band structure • Modified bare propagator with IR cutoff: $G_0^{\Lambda}(k_0, \mathbf{k}) = \frac{\theta^{\Lambda}(\mathbf{k})}{ik_0 - \xi_{\mathbf{k}}}$
 - Vertex expansion (with momentum dependence):

exact RG equation

- $-\bigvee^{S^{\Lambda}} = -\bigvee^{S^{\Lambda}} + \bigvee^{S^{\Lambda}}_{G^{\Lambda}} + -\bigvee^{S^{\Lambda}}_{G^{\Lambda}} + -\bigvee^{G^{\Lambda}}_{G^{\Lambda}} + -\bigvee^$
 - Salmhofer & Honerkamp, Prog. Theor. Phys. 105 (2001)
 Metzner et al., Rev. Mod. Phys. 84, 299 (2012)
- 4 2 $E_{\mathbf{k}}$ 0 $-2 k_y$ -20 2 k_x • Neglect 6-point and higher vertices • No self-energy feedback Peierls Cooper (a) (b)Vertex-Correctio

(c)

Screen

N-Patch FRG scheme

Density waves on the honeycomb lattice

Monerkamp, Phys. Rev. Lett. 100, 146404 (2008) % Raghu et al., Phys. Rev. Lett. 100, 156401 (2008)

$$H_{\text{int}} = U \sum_{i} n_{i,\uparrow} n_{i,\downarrow} + V_1 \sum_{\langle i,j \rangle,\sigma,\sigma'} n_{i,\sigma} n_{j,\sigma'}$$
$$+ V_2 \sum_{\langle \langle i,j \rangle \rangle,\sigma,\sigma'} n_{i,\sigma} n_{j,\sigma'}$$

Phonon-induced electron-electron interactions

- Lattice vibrations 514 nm 50000 (Raman spectroscopy) (C)200 Graphite 40000 Intensity (a. u.) () 160 120 80 30000 0.8 20000 0.6 Graphene 40 10000 0.4 0 2500 1500 2000 3000 Phonon wavevector q Raman shift (cm⁻¹) 0.0 ⊾ 0.0 C. Park et al. NL 8 (2008) A. C. Ferrari et al. PRL 97 (2006)
- Modified hopping $t \rightarrow t + dt$
 - \rightarrow EPC coupling induces Kekule instability:

© Classen, MMS, Honerkamp, Phys. Rev. B **90**, 035122 (2014)

• Phase diagram with short-ranged Coulomb i.a.:

Critical scales of honeycomb stacks

• Critical scales with rescaled *ab initio* interaction parameters:

• ABC trilayer most prone to instabilities, critical scale drops quickly when $U < U_{c,Singlelayer}$

• Ab initio parameters put system close to QSH/AFM phase boundary

MMS, Uebelacker, Honerkamp, Phys. Rev. B 85, 235408 (2012)

MMS, Uebelacker, DDScherer, Honerkamp, Phys. Rev. B 86, 155415 (2012)

(F)RG aspects of graphene @VHS

RG for graphene @VHS - g-ology

$$\mathcal{L} = \sum_{\alpha=1}^{3} \psi_{\alpha}^{\dagger} (\partial_{\tau} - \epsilon_{\mathbf{k}} + \mu) \psi_{\alpha} - \frac{1}{2} g_{4} \psi_{\alpha}^{\dagger} \psi_{\alpha}^{\dagger} \psi_{\alpha} \psi_{\alpha}$$
$$- \sum_{\alpha \neq \beta} \frac{1}{2} \Big[g_{1} \psi_{\alpha}^{\dagger} \psi_{\beta}^{\dagger} \psi_{\alpha} \psi_{\beta} + g_{2} \psi_{\alpha}^{\dagger} \psi_{\beta}^{\dagger} \psi_{\beta} \psi_{\alpha} + g_{3} \psi_{\alpha}^{\dagger} \psi_{\alpha}^{\dagger} \psi_{\beta} \psi_{\beta} \Big]$$

• RG equations:

$$\frac{\mathrm{d}g_1}{\mathrm{d}y} = 2d_1g_1(g_2 - g_1), \quad \frac{\mathrm{d}g_2}{\mathrm{d}y} = d_1(g_2^2 + g_3^2)$$

$$\frac{\mathrm{d}g_3}{\mathrm{d}y} = -(n-2)g_3^2 - 2g_3g_4 + 2d_1g_3(2g_2 - g_1),$$

$$\frac{\mathrm{d}g_4}{\mathrm{d}y} = -(n-1)g_3^2 - g_4^2$$

- reproduce two-patch RG for n=2
- ▶ Graphene at VHS needs n=3

Nandkishore, Levitov, Chubukov, Nature Physics 8, 158 (2012)

RG for graphene @VHS - g-ology

➡ in contrast to square lattice (SDW@perfect nesting)

FRG for graphene @VHS - N-Patch FRG

• Full band structure & realistic model parameters:

$$\begin{aligned} H_0 &= \left[t_1 \sum_{\langle i,j \rangle} \sum_{\sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} + t_2 \sum_{\langle \langle i,j \rangle \rangle} \sum_{\sigma} c_{i,\sigma}^{\dagger} c_{j,\sigma} \right. \\ &+ t_3 \sum_{\langle \langle \langle i,j \rangle \rangle \rangle} \sum_{\sigma} \bar{c}_{i,\sigma}^{\dagger} c_{j,\sigma} + \mathrm{h.c.} \right] - \mu n, \end{aligned}$$

• Interaction terms:

	Graphene		Graphite	
	Bare	cRPA	Bare	cRPA
$U_{00}^{A \text{ or } B}$ (eV)	17.0	9.3	17.5, 17.7	8.0, 8.1
U_{01} (eV)	8.5	5.5	8.6	3.9
$U_{02}^{A \text{ or } B}$ (eV)	5.4	4.1	5.4, 5.4	2.4, 2.4
U_{03} (eV)	4.7	3.6	4.7	1.9

Wehling et al, Phys. Rev. Lett. **106**, 236805 (2011)

- longer-range hoppings decrease degree of nesting
- dSC wins
- with realistic parameters: $T_c \thicksim a$ few K

Kiesel, Platt, Hanke, Abanin, Thomale, Phys. Rev. B 86, 020507 (2012)
Wang et al, Phys. Rev. B 85, 035414 (2012)

Conclusions & Outlook

Graphene allows for beautiful/useful/complex/ unprecedented/exotic theory!

- Phase transitions and criticality @Dirac point
 - precision estimates dynamical bosonization, higher-derivative terms? multicriticality?
- Phase transitions and criticality @VHS realization of chiral d-wave superconductor?
 - coupling to the lattice
 - self-energy effects
 - van Hove situation difficult to assess by other methods (finite-size, sign problems)
 - collective fluctuations, cf. Krahl, Friederich, Wetterich on Hubbard model
- Methods & related materials:
 - ▶ spin-SU(2) extend scheme to include SOC → talks by D. Scherer & G. Schober
 - multiorbital models talk by C. Platt