Spontaneous symmetry breaking in fermion systems with functional RG

Andreas Eberlein and Walter Metzner

MPI for Solid State Research, Stuttgart

Lefkada, September 2014

Outline

- Introduction
- Coupled fermion-boson flow for a fermionic superfluid
- Fermionic functional RG for a fermionic superfluid
- Fusion of functional RG and mean-field theory

Spontaneous symmetry breaking in condensed matter

Quantum liquids:

- Superfluid ⁴He (bosons)
- Superfluid ³He (fermions)

Solids:

Crystallization

Electrons in solids:

- Magnetism: ferro-, ferri-, antiferro-, ...
- Charge order: density waves, stripes, ...
- Orbital order
- Superconductivity: singlet (s-wave, d-wave), triplet (p-wave)

Introduction

Famous example: CuO_2 high temperature superconductors

Doping x

Vast hierarchy of energy scales: Magnetic interaction and superconductivity generated from kinetic energy and Coulomb interaction

- antiferromagnetism in undoped compounds
- d-wave superconductivity at sufficient doping
- Pseudo gap, non-Fermi liquid in "normal" phase at finite T

Prototype: Hubbard model

Effective single-band model for CuO_2 -planes in HTSC: (Anderson '87, Zhang & Rice '88)

Antiferromagnetism at/near half-filling for sufficiently large U

d-wave superconductivity away from half-filling (perturbation theory, RG, cluster DMFT, variational MC, some QMC)

Fermionic flow equations

Fermi surface singularity at $\omega = 0$, $\xi_{\mathbf{k}} = \epsilon_{\mathbf{k}} - \mu = 0$

Flow parameter: Infrared cutoff $\Lambda > 0$

• Momentum cutoff: $G_0^{\Lambda}(\mathbf{k}, i\omega) = \frac{\Theta(|\xi_{\mathbf{k}}| - \Lambda)}{i\omega - \xi_{\mathbf{k}}}$

• Frequency cutoff: $G_0^{\Lambda}(\mathbf{k}, i\omega) = \frac{\Theta(|\omega| - \Lambda)}{i\omega - \xi_{\mathbf{k}}}$

Many other choices: mixed momentum-frequency, smooth cutoff etc. Initial condition: $\Lambda_0 = \text{band width}$ (momentum) or ∞ (frequency)

Fermionic flow equations

Exact functional flow equation for effective action $\Gamma^{\Lambda}[\psi, \bar{\psi}]$ (Wetterich 1993; Salmhofer & Honerkamp 2001)

 \Rightarrow Exact hierarchy of flow equations for m-particle vertex functions

Introduction

Effective 2-particle interaction at 1-loop

All channels (particle-particle, particle-hole) captured on equal footing.

Flow equations for susceptibilities

Introduction

Effective interaction and susceptibilities in Hubbard model:

A. Eberlein and W. Metzner

Routes to symmetry breaking

Divergence of effective interaction at scale Λ_c signals instability

 \Rightarrow order parameter generated

Routes to spontaneous symmetry breaking in functional RG:

- Hubbard Stratonovich bosonization (Baier, Bick, Wetterich 2004)
- Fermionic flow with order parameter (Salmhofer et al. 2004)
 → Andreas Eberlein

Issues:

- Accurate order parameters
- Order parameter fluctuations
- Ward identities Goldstone mode

Outline

- Introduction
- Coupled fermion-boson flow for a fermionic superfluid
- Fermionic functional RG for a fermionic superfluid
- Fusion of functional RG and mean-field theory

Superfluid state prototype for continuous symmetry breaking with Goldstone mode

This lecture: Focus on ground state (T = 0)

Model for fermionic superfluid

Fermionic action with attractive contact interaction U < 0

$$\mathcal{S}[\psi,\bar{\psi}] = -\int_{k,\sigma} \bar{\psi}_{k\sigma} (ik_0 - \xi_{\mathbf{k}}) \psi_{k\sigma} + U \int_{k,k',q} \bar{\psi}_{q-k\downarrow} \bar{\psi}_{k\uparrow} \psi_{k'\uparrow} \psi_{q-k'\downarrow}$$

 $\psi_{k\sigma}$, $\bar{\psi}_{k\sigma}$ Grassmann fields, $k = (k_0, \mathbf{k})$, k_0 Matsubara frequency

Spin-singlet pairing with U(1)-symmetry breaking

Complex order parameter $\langle \psi_{k\uparrow}\psi_{-k\downarrow}\rangle$

Hubbard-Stratonovich bosonization

Decouple two-fermion interaction by Hubbard-Stratonovich transformation, introducing a bosonic order parameter field

$$S[\psi, \bar{\psi}, \phi] = -\int_{k,\sigma} \bar{\psi}_{k\sigma} (ik_0 - \xi_k) \psi_{k\sigma} - \int_q \phi_q^* \frac{1}{U} \phi_q + \int_{k,q} \left(\bar{\psi}_{q-k\downarrow} \bar{\psi}_{k\uparrow} \phi_q + \psi_{k\uparrow} \psi_{q-k\downarrow} \phi_q^* \right)$$

U(1) symmetry: $\psi \mapsto e^{i\varphi}\psi$, $\bar{\psi} \mapsto e^{-i\varphi}\bar{\psi}$, $\phi \mapsto e^{2i\varphi}\psi$, $\phi^* \mapsto e^{-2i\varphi}\psi$

Exact flow equation for effective action

Add regulator functions R_f^{Λ} and R_b^{Λ} for fermions and bosons

 \Rightarrow Scale dependent effective action $\Gamma^{\Lambda}[\psi,\bar{\psi},\phi]$

Exact flow equation (Wetterich 1993)

$$\frac{d}{d\Lambda}\Gamma^{\Lambda}[\psi,\bar{\psi},\phi] = \frac{1}{2} \text{Str} \frac{\partial_{\Lambda} \mathbf{R}^{\Lambda}}{\Gamma^{(2)\Lambda}[\psi,\bar{\psi},\phi] + \mathbf{R}^{\Lambda}}$$

 $\Gamma^{(2)\Lambda}[\psi,ar{\psi},\phi]$ matrix of second derivatives w.r.t. fields

Ansatz for effective action

$$\begin{split} \Gamma^{\Lambda}[\psi,\bar{\psi},\phi] &= \Gamma^{\Lambda}_{b}[\phi] + \Gamma^{\Lambda}_{f}[\psi,\bar{\psi}] + \Gamma^{\Lambda}_{bf}[\psi,\bar{\psi},\phi] \\ & \text{bosons fermions mixed} \end{split}$$

Two distinct regimes:

- $\Lambda > \Lambda_c$: symmetric regime, no anomalous terms
- $\Lambda < \Lambda_c$: symmetry broken regime, anomalous terms ($\psi\psi$, $\psi\psi\phi$ etc.)

Conditio sine qua non: respect symmetry

Ansatz for effective action: fermions

Only quadratic terms:

$$\begin{split} \Gamma_{f}^{\Lambda}[\psi,\bar{\psi}] &= -\int_{k,\sigma} \bar{\psi}_{k\sigma} \left(i Z_{f}^{\Lambda} k_{0} - A_{f}^{\Lambda} \xi_{\mathbf{k}} \right) \psi_{k\sigma} \\ &+ \int_{k,\sigma} \left(\Delta^{\Lambda} \bar{\psi}_{-k\downarrow} \bar{\psi}_{k\uparrow} + \Delta^{\Lambda *} \psi_{k\uparrow} \psi_{-k\downarrow} \right) \end{split}$$

Second term with pairing gap Δ^{Λ} only in symmetry-broken regime

 Z_f^{Λ} and A_f^{Λ} finite renormalizations – usually discarded $(Z_f^{\Lambda} = A_f^{\Lambda} = 1)$

Quartic terms (generated by flow) may be decoupled during the flow by dynamical bosonization (Gies & Wetterich 2002, 2004; Floerchinger et al. 2008, 2009)

Ansatz for effective action: fermion-boson interaction

$$\begin{split} \Gamma^{\Lambda}_{bf}[\psi,\bar{\psi},\phi] &= \mathbf{g}^{\Lambda} \int_{k,q} \left(\bar{\psi}_{q-k\downarrow} \bar{\psi}_{k\uparrow} \phi_{q} + \psi_{k\uparrow} \psi_{q-k\downarrow} \phi_{q}^{*} \right) \\ &+ \tilde{\mathbf{g}}^{\Lambda} \int_{k,q} \left(\bar{\psi}_{q-k\downarrow} \bar{\psi}_{k\uparrow} \phi_{-q}^{*} + \psi_{k\uparrow} \psi_{q-k\downarrow} \phi_{-q} \right) \end{split}$$

Second (anomalous) term only in symmetry-broken regime \tilde{g}^{Λ} small, often neglected ($\tilde{g}^{\Lambda} = 0$) Renormalization of g^{Λ} small, often neglected ($g^{\Lambda} = 1$)

Other terms (e.g. $\bar{\psi}\psi\phi$, $\bar{\psi}\psi\phi^*\phi$) usually discarded

Ansatz for effective action: bosons

General structure:

$$\Gamma^{\Lambda}_{b}[\phi] = \int dx \; \mathcal{U}^{\Lambda}_{ ext{loc}}[(\phi(x)] + ext{gradient terms}$$

Simplest (quartic) ansatz for local part:

$$\begin{split} & U_{\rm loc}^{\Lambda}(\phi) = \frac{1}{2} (m_b^{\Lambda})^2 |\phi|^2 + \frac{1}{8} u^{\Lambda} |\phi|^4 \quad \text{for } \Lambda > \Lambda_c \\ & U_{\rm loc}^{\Lambda}(\phi) = \frac{1}{8} u^{\Lambda} [|\phi|^2 - |\alpha^{\Lambda}|^2]^2 \qquad \text{for } \Lambda < \Lambda_c \text{ (mexican hat)} \end{split}$$

Ansatz for effective action: boson gradient terms

Simplest (quadratic) ansatz for gradient terms:

 $\frac{1}{2}\int dx \Big[W^{\Lambda}\phi^*(x)\partial_{x_0}\phi(x) - Z_b^{\Lambda} |\nabla\phi(x)|^2 \Big]$

Birse et al. 2005 Diehl et al. 2007 Krippa 2007

The simplest ansatz, with quartic local and quadratic gradient terms yields decent results for Δ and T_c in three dimensions, not only for weak, but also for strong interactions (from BCS to BEC).

Example: T_c in three dimensions

Critical temperature T_c versus inverse scattering length for fermions in 3D continuum, obtained from relatively simple ansatz for Γ^{Λ} :

Decent approximation from weak to strong attraction!

A. Eberlein and W. Metzner

Spontaneous symmetry breaking in fermion systems

Ansatz for effective action: boson gradient terms

Simplest (quadratic) ansatz for gradient terms:

 $\frac{1}{2}\int dx \Big[W^{\Lambda}\phi^*(x)\partial_{x_0}\phi(x) - Z_b^{\Lambda} |\nabla\phi(x)|^2 \Big]$

Birse et al. 2005 Diehl et al. 2007 Krippa 2007

The simplest ansatz, with quartic local and quadratic gradient terms yields decent results for Δ and T_c in three dimensions, not only for weak, but also for strong interactions (from BCS to BEC).

But: u^{Λ} , W^{Λ} , $(Z_b^{\Lambda})^{-1}$ scale to zero for $\Lambda \to 0$ in dimensions $d \leq 3$!

Strong renormalization of longitudinal order parameter fluctuations expected, but transverse fluctuations (Goldstone) should be protected !

 \Rightarrow Mission: Save the Goldstone mode!

Ansatz for effective action: boson gradient terms

Goldstone mode protected "by hand" in Strack, Gersch, wm 2008

Goldstone mode protection by symmetry can be achieved by adding quartic gradient term

 $\frac{1}{8}\int dx\; \mathbf{Y}^{\Lambda}(\nabla |\phi(x)|^2)^2$

Strack, PhD thesis 2009 **Obert**, Husemann, wm 2013

Previously introduced to treat Goldstone mode in O(N) models by Tetradis & Wetterich 1994

Decomposition in longitudinal and transverse fluctuations

Choose bosonic order parameter α^{Λ} real and positive

Decompose $\phi(x) = \alpha^{\Lambda} + \sigma(x) + i\pi(x)$, $\phi_q = \alpha^{\Lambda}\delta_{q0} + \sigma_q + i\pi_q$ with longitudinal (σ) and transverse (π) fluctuations \Rightarrow

$$\Gamma_b^{\Lambda}[\phi] = \frac{1}{2} \int_q \left[m_\sigma^2 + Z_\sigma(q_0^2 + \omega_q^2) \right] \sigma_q \sigma_{-q} + \frac{1}{2} \int_q Z_\pi(q_0^2 + \omega_q^2) \pi_q \pi_{-q} + \int_q W q_0 \pi_q \sigma_{-q} + \frac{1}{2} \int_{q,p} U(p) \alpha \sigma_p \sigma_q \sigma_{-q-p} + \dots + \frac{1}{4} \int_{q,q',p} U(p) \sigma_q \sigma_{p-q} \pi_{q'} \pi_{-p-q'}$$

with $m_{\sigma}^2 = u\alpha^2$, $Z_{\pi} = Z_b$, $Z_{\sigma} = Z_b + Y\alpha^2$, and $U(p) = u + Y(p_0^2 + \omega_p^2)$ $\omega_q^2 \sim q^2$ for small q

Decomposition in longitudinal and transverse fluctuations

$$\Gamma_{bf}^{\Lambda}[\psi,\bar{\psi},\phi] = \mathbf{g}_{\sigma} \int_{k,q} \left(\bar{\psi}_{q-k\downarrow} \bar{\psi}_{k\uparrow} \sigma_{q} + \psi_{k'\uparrow} \psi_{q-k'\downarrow} \sigma_{-q} \right) \\ + i \mathbf{g}_{\pi} \int_{k,q} \left(\bar{\psi}_{q-k\downarrow} \bar{\psi}_{k\uparrow} \pi_{q} - \psi_{k'\uparrow} \psi_{q-k'\downarrow} \pi_{-q} \right)$$

with $g_{\sigma} = g + \tilde{g}$ and $g_{\pi} = g - \tilde{g}$

Nearest neighbor hopping *t*, dispersion $\epsilon_{\mathbf{k}} = -2t(\cos k_x + \cos k_y)$

Moderate attractive interaction U = -4t

Quarter filling (Fermi surface nearly circular)

T = 0 (ground state)

Regulator functions:

 $R_f(k) = R_f(k_0) = [i\Lambda \operatorname{sgn}(k_0) - ik_0] \Theta(\Lambda - |k_0|)$ $R_b(q) = R_b(q_0) = Z_b(\Lambda^2 - q_0^2) \Theta(\Lambda - |q_0|)$

Flow of gap Δ and bosonic order parameter α :

 Δ slightly larger than lpha

Flow of bosonic masses m_b^2 and m_{σ}^2 :

 m_{σ}^2 vanishes for $\Lambda \rightarrow 0$

Flow of bosonic Z-factors:

 Z_{σ} diverges, Z_{π} saturates for $\Lambda
ightarrow 0$

A. Eberlein and W. Metzner

Flow of interaction parameters u and Y:

u vanishes, *Y* diverges for $\Lambda \rightarrow 0$

A. Eberlein and W. Metzner

Flow of the σ - π mixing coefficient W:

W vanishes for $\Lambda \rightarrow 0$

Goldstone mode – cancellations from symmetry

Vanishing Goldstone mass $m_{\pi} = 0$ conserved by flow? At first sight, many contributions:

$$egin{aligned} & \mathcal{G}_{f}(k) = -\langle \psi_{k\sigma} ar{\psi}_{k\sigma}
angle, \ \mathcal{F}_{f}(k) = -\langle \psi_{k\uparrow} \psi_{-k\downarrow}
angle \ & \mathcal{G}_{\sigma\sigma}(q) = \langle \sigma_{q} \sigma_{-q}
angle, \ \mathcal{G}_{\pi\pi}(q) = \langle \pi_{q} \pi_{-q}
angle, \ \mathcal{G}_{\pi\sigma}(q) = \langle \pi_{q} \sigma_{-q}
angle \end{aligned}$$

Derivative D_{Λ} acts only on regulator function in propagators

A. Eberlein and W. Metzner

Goldstone mode - cancellations from symmetry

Bosonic fluctuation contributions cancel \Rightarrow

$$\frac{d}{d\Lambda}m_{\pi}^{2} = 2\left(\frac{g_{\sigma}}{\alpha} - \frac{g_{\pi}^{2}}{\Delta}\right)\int_{k}D_{\Lambda}F_{f}(k)$$

Ward identity from U(1)-symmetry:

 $\Delta = g lpha - ilde{g} lpha^* = g_\pi lpha$ for real lpha

case $\tilde{g} = 0$: Bartosch, Kopietz, Ferraz 2009

$$\Rightarrow \frac{d}{d\Lambda}m_{\pi}^{2} = \frac{2}{\alpha}\left(g_{\sigma} - g_{\pi}\right)\int_{k}D_{\Lambda}F_{f}(k) \Rightarrow$$

$$rac{d}{d\Lambda}m_{\pi}^2=0 ext{ iff } g_{\sigma}=g_{\pi}$$

Goldstone mass vanishes

Goldstone mode – cancellations from symmetry

Setting $g_{\sigma} = g_{\pi}$ yields further cancellations in other quantities such that

- Ward identity $\Delta = g_{\pi} \alpha$ consistent with flow of Δ , g_{π} and α
- Z_{π} finite for $\Lambda \rightarrow 0$
- $W/m_{\sigma}^2
 ightarrow C$ finite for $\Lambda
 ightarrow 0$

$$\Rightarrow \quad \textit{\textit{G}}_{\pi\pi}(\textit{q}) \sim rac{1}{Z_{\pi}(q_0^2 + \omega_{f q}^2)} \qquad \textit{\textit{G}}_{\pi\sigma}(\textit{q}) \sim rac{\textit{\textit{C}}q_0}{Z_{\pi}(q_0^2 + \omega_{f q}^2)}$$

 m_{σ}^2 , W, and Z_{σ}^{-1} vanish for $\Lambda \to 0$ (proportional to Λ in 2D) $G_{\sigma\sigma}(q)$ exhibits anomalous scaling

Full agreement with IR behavior known for interacting bosons (e.g. Pistolesi et al. 2004)

A. Eberlein and W. Metzner

Goldstone mode - cancellations from symmetry

Not yet happy?

Exact flow would yield $g_\sigma \neq g_\pi$

Consistent truncation with $g_{\sigma} \neq g_{\pi}$ requires inclusion of two-fermion-two-boson vertices (Ward identity)

Summary (symmetry-breaking via bosonization)

- fRG with Hubbard-Stratonovich bosonization ideal framework to treat order parameter fluctuation effects
- A simple truncation of the effective action captures all singularities associated with the Goldstone boson in fermionic superfluids (Obert, Husemann, wm 2013)
- Many other problems of symmetry-breaking treated by fRG with HS-fields, mostly by Heidelberg group: antiferromagnetism, d-wave superconductivity, Kosterlitz-Thouless transition, ...