

O(N) model in the large N limit

• Flow equation

Solving the flow equation

- Local flow
- Exact solution
- Bardeen-Moshe-Bander phenomenon

Conclusion

INTRODUCTION

/2

Flow Equation

Flow equation for the O(N) symmetric *effective action*

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \int \frac{d^D q}{(2\pi)^D} \left(\frac{\delta^2 \Gamma_k[\phi]}{\delta \phi(q) \delta \phi(-q)} + R_k(q) \right)^{-1} \partial_t R_k(q)$$

Ansatz for the solution ——— Local Potential Approximation (LPA)

$$\Gamma_k = \int d^D x \left[rac{1}{2} (\partial \phi)^2 + U_k(\phi^a \phi_a)
ight]$$

This gives the flow equation for the effective *potential*

$$\partial_t U_k = \frac{1}{2} (2\pi)^{-3} \int_q \partial_t R_k \left(\frac{N-1}{M_0} + \frac{1}{M_1} \right)$$

$$M_0 := q^2 + R_k + U'_k$$

$$M_1 := q^2 + R_k + U'_k + 2\rho U''_k$$

$$(.)' := \frac{\delta}{\delta\rho}$$

$$D = 3$$

$$\bar{\rho} := \phi_a \phi^a$$

INTRODUCTION

Flow Equation

- Using the optimized regulator: $R_k = (k^2 q^2)\theta(k^2 q^2)$ the integral is analytic
- The flow for the dimensionless effective potential for finite N

Dimensionless quantities
$$- \begin{cases} u' \equiv U'/k^2 \\ u'' \equiv U''/k \\ \rho \equiv \bar{\rho}/k \end{cases}$$

$$\begin{split} \partial_t u &= (D-2)\rho u' - Du + (N-1)A_D \frac{1}{1+u'} + A_D \frac{1}{1+u'+2\rho u''} \\ A_3 &= \frac{1}{6\pi^2} \text{ in 3D} \end{split}$$

INTRODUCTION

Flow Equation

- Using the optimized regulator: $R_k = (k^2 q^2)\theta(k^2 q^2)$ the integral is analytic
- Taking the large *N*-limit (η =0 and LPA becomes exact)

The flow for the dimensionless effective potential (actually for its derivative)

Dimensionless quantities

$$\partial_t u = (D-2)\rho u' - Du + rac{1}{1+u'}$$
 $\partial_t u' = -2u' + \rho u'' - rac{u''}{(1+u')^2}$ in 3D

$$u' \equiv U'/k^2$$
$$u'' \equiv U''/k$$
$$\rho \equiv \bar{\rho}/k$$

Local Flow

Expanding the potential in Taylor-series around the min.

$$\begin{aligned} u &= \sum_{n=1}^{n_{trunc}} \frac{a_n}{n!} (\rho - \rho_0)^n \\ u'(\rho_0) &= 0 \quad \lambda \equiv a_2 \quad \tau \equiv a_3 \end{aligned}$$

Constants from initial value $c_{\rho} = \rho_{0,\Lambda} - 1$, $c_{\lambda} = 1/\lambda_{\Lambda} - 2$, $c_{\tau} = \tau_{\Lambda}/\lambda_{\Lambda}^3 - 2$

Expanding the potential in Taylor-series around the min.

Local Flow

$$u = \sum_{n=1}^{n_{trunc}} \frac{a_n}{n!} (\rho - \rho_0)^n$$
$$u'(\rho_0) = 0 \quad \lambda \equiv a_2 \quad \tau \equiv a_3$$

So in summary: from Taylor expansion <u>3 type of fixed points</u>:

A half interval of fixed points can be observed beside the isolated W-F.

Global Flow

SOLVING THE F.E.

The flow equation for u' can be solved ANALITICALLY in the large N

$$\frac{\rho - 1}{\sqrt{u'}} - \frac{1}{2} \frac{\sqrt{u'}}{1 + u'} - \frac{3}{2} \arctan \sqrt{u'} = G(u'e^{2t})$$
$$u' \ge 0$$
$$d_t u' = -2u' + \rho u'' - \frac{u''}{(1 + u')^2}$$

Global Flow

The flow equation for u' can be solved ANALITICALLY in the large N

Here G-s on the RHS are depending on the initial conditions

Global Flow

Global Flow

So the equations to be solved:

$$\frac{\rho - 1}{\sqrt{u'}} - \frac{1}{2} \frac{\sqrt{u'}}{1 + u'} - \frac{3}{2} \arctan \sqrt{u'} = c$$

$$\frac{\rho - 1}{\sqrt{-u'}} + \frac{1}{2} \frac{\sqrt{-u'}}{1 + u'} - \frac{3}{4} \ln \frac{1 - \sqrt{-u'}}{1 + \sqrt{-u'}} = \bar{c}$$
 Turns out c=- \bar{c}

Global Flow

u' ∞ ρ ∞ ∞ 0 1 -1

Solutions are given in four branches.

c=0

Global Flow

u' ∞ ρ ∞ ∞ -1

Solutions are given in four branches.

c=1

Global Flow

u' ∞ ρ ∞ ∞ 1 -1

Solutions are given in four branches.

c=2

Global Flow

Solutions are given in four branches.

Global Flow

u' ∞ ρ ∞ ∞ 0 1 -1

Solutions are given in four branches.

Global Flow

By analytical reasoning one can find the branches connected as:

- u'>0 to u'>0
- u'<0 to u'<0

Global VS Local

 $\lambda \equiv u''(\rho_0)$ $\tau \equiv u^{\prime\prime\prime}(\rho_0)$

Gauss

 $\rho_0 * = 1$

Thus if we tune the VEV to its critical value we can distinguish different type of fixed point solutions

Wilson-Fisher Tricritical

NEW compared to the Taylor expansion

Parameter space

Breaking of scale invariance

THE FP STRUCTURE

The physical mass of the scalar field in the symmetric phase at the fixed point is then given by $m^2 = u_*'(0) k^2$

The Potential

Integrating u' respect to ρ

THE FP STRUCTURE

Conclusion

Non-perturbative solution to a 3d, O(N) symmetric quantum field theory theory in the large N limit

Study of the fixed point solutions and phase transitions (WF, Tricrit., BMB)

BMB: UV fixed point with breaking of the scale invariance

LITERATURE

[1] Bardeen-Moshe-Bander, Fixed Point and the Ultraviolet Triviality of (ϕ^{2}) 3^310.1103/PhysRevLett.53.2071 [2] D. F. Litim, Optimisation of the exact renormal-isation group, Phys. Lett. B 486(2000) 92, [hep-th/0005245] [3] Edouard Marchais, PhD Thesis [4] M. Heilmann, D. F. Litim, F. Synatschke-Czerwonka and A. Wipf1, Critical behavior of supersymmetric O(N) models in the large-N limit,10.1103/PhysRevD.86.105006 [5] Daniel F. Litim, Marianne C. Mastaler, Franziska Synatschke-Czerwonka, Andreas Wipf ,*Critical behavior of supersymmetric O(N)* models in the large-N limit Theory space figure: Frencois David, Bardeen-Moshe-Bander FixedPoint and the Ultraviolet Triviality Phi^3 3

Τηανκψου!

Supported by: European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/ 2-11/1-2012-0001 'National Excellence Program'