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General Motivations

I Fixed points are fundamental structures that underpin the
efficiency of field-theoretic methods

I A clear determination of them is essential to a deep
understanding of physical problem at hand as well as the
setting up of efficient and convergent calculations scheme

I We focus here on the fixed point search for O(N) symmetric
scalar field theories which cover a large spectrum of physical
situations via the effective field theories apporach

I To do so we use the functional renormalisation group
technology within the local potential approximation at leading
order



Flow equation

I The LPA leads to a single flow equation for the dimensionless
effective potential u(ρ)

∂tu = (d − 2)ρu′ − du + vd(N − 1) `(u′) + vd `(u
′ + 2ρu′′)

with t = ln k/Λ, u = k−dU and ρ = k2−dφ2/2.

I The fluctuation part is controlled by the threshold function

`(ω) = −
∫ ∞
0

dy yd/2−1
y r ′(y)

y [1 + r(y)] + ω

r(y) = (1/y − 1)θ(1− y) ⇒ `(ω) ∝ 1

1 + ω

I This equation encapsulated all the physical information about
the infrared scaling of the effective potential and is our
principal subject of investigation



Fluctuations

I The analytical structure of the scale invariant-potential
(∂tu

′ = 0) is a key ingredient for the existence of genuine
fixed point solution

I When transverse modes are dominating (N large) a complete
analytical solution is computable for arbitrary regularization
scheme and dimensions

I The large N shows a extremely rich fixed point structure that
serves as a landmark for computation at finite N

I Due to the effect of the longitudinal mode we are reduced to
local expansions only



Wilson-Fisher potential reconstruction at large N
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Relevant parameters and local solutions

I Local expansions are controlled by convergence limiting poles
in the complex plane

I The calculation of expansions about finite field can be
systematized to reach several hundreds orders of magnitude

I Expansion usually depends on one or two relevant parameters
that controls completely the local solution. A unique value of
these parameters corresponds to a fixed point solution

I Using large order expansions one can computed with a
reasonable accuracy the critical value for the bare relevant
parameter

I Alternatively, numerical integration of the flow at the fixed
point can be use to compute this critical value



Critical potential in 3 dimensions for all ρ
(N = 10n for n = 0, 1, 2, 3, 5,∞)
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Figure 3.5: Plot of the mass amplitudes m2 = u� (up) and M2 = u� + 2ρu�� (down) for

(from light blue to dark blue) N = 1, 10, 100, 1000, 100000. The field is normalized like

ρ/λ1 and we used the rescaling ρ → ρ
1+|ρ| and u� → u”

2+u� . The dashed curve corresponds

to the large N potential.



Wilson-Fisher critical exponents

I By linearizing the RG flow around the desired fixed point
solution (stability matrix) we can easily computed the critical
exponents

I The more precise is the critical value of the relevant
parameter, better is the precision on the critical exponents
corresponding to a wider parameter space investigation

N M ν ω ω2

1 33 0.649561 0.655745 3.18001
10 33 0.9186051 0.871310 2.898458
100 33 0.992424 0.987849 2.986599
1000 31 0.9992492 0.998798 2.998650
10000 31 0.999924 0.999879 2.999865

∞ 1 1 3



Convexity

I Expectation: A correct evaluation of the corrections to the
microscopic potential should lead to a flattening of the
function U(φ) between its minima
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Convexity

I In the deep infrared the flow is dominated by massless
fluctuations and is also approaching a highly nonlinear regime
difficult to tackle numerically
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Convexity

I In the deep infrared the flow is dominated by massless
fluctuations and is also approaching a highly nonlinear regime
difficult to tackle numerically

I In this regime, and within a phase with spontaneous symmetry
breaking, these instabilities are related to the approach to a
convex potential (r(y) = (1/y)θ(1− y))

1 + u′ → 0 ⇒ U ′(ρ) = −k2

I Using the large N flow equation one can show that the
completion of a flat potential is governed by stable infrared
fixed point

u′ = −1

I The effect of the longitudinal mode does not modify the
infrared scaling and therefore the approach to convexity is
super-universal. This fixed solution is also apparent in local
expansions around vanishing field.



Conclusion and perspectives

I The large N limit gives a complete precise analytical picture
of the scaling effective potential

I This information can be used to understand and improve the
calculation of the effective potential at finite N

I The scaling potential in higher dimensions can also be studied
along similar lines

I Fixed points that only exist for large N, dependence on the
regularization scheme, multi-critical models, next to LPA
approximation, etc . . .



THANK YOU !



Back up
Convergence Radii of exp. A and B of the Wilson-Fisher fixed point solution, and
location of the convergence-limiting poles (dots) in the complexified ρ-plane (RA = 3.18,
θ = 98.7◦ and RB = 3.18, θB = 80.68◦)
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Back up
Radius of convergence for the expansion C of the Wilson-Fisher fixed point solution and
estimated location of the convergence-limiting pole (dots) in the complexified 1

ρ
-plane.

(RC = 3.18... and θC = 80.68◦...)
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