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General Motivations

» Fixed points are fundamental structures that underpin the
efficiency of field-theoretic methods

» A clear determination of them is essential to a deep
understanding of physical problem at hand as well as the
setting up of efficient and convergent calculations scheme

» We focus here on the fixed point search for O(N) symmetric
scalar field theories which cover a large spectrum of physical
situations via the effective field theories apporach

» To do so we use the functional renormalisation group
technology within the local potential approximation at leading
order



Flow equation

» The LPA leads to a single flow equation for the dimensionless
effective potential u(p)

Oru = (d — 2)pu" — du + vg(N — 1) U(U") + vg £(u" + 2pu”)
with t = Ink/A, u=k=9U and p = k?=9¢2/2.
» The fluctuation part is controlled by the threshold function
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» This equation encapsulated all the physical information about
the infrared scaling of the effective potential and is our
principal subject of investigation



Fluctuations

» The analytical structure of the scale invariant-potential
(0:u' = 0) is a key ingredient for the existence of genuine
fixed point solution

» When transverse modes are dominating (N large) a complete
analytical solution is computable for arbitrary regularization
scheme and dimensions

» The large N shows a extremely rich fixed point structure that
serves as a landmark for computation at finite NV

» Due to the effect of the longitudinal mode we are reduced to
local expansions only



Wilson-Fisher potential reconstruction at large N
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Relevant parameters and local solutions

» Local expansions are controlled by convergence limiting poles
in the complex plane

» The calculation of expansions about finite field can be
systematized to reach several hundreds orders of magnitude

» Expansion usually depends on one or two relevant parameters
that controls completely the local solution. A unique value of
these parameters corresponds to a fixed point solution

» Using large order expansions one can computed with a
reasonable accuracy the critical value for the bare relevant
parameter

» Alternatively, numerical integration of the flow at the fixed
point can be use to compute this critical value



Critical potential in 3 dimensions for all p
(N =10" for n=0,1,2,3,5, c0)




Wilson-Fisher critical exponents

» By linearizing the RG flow around the desired fixed point
solution (stability matrix) we can easily computed the critical
exponents

» The more precise is the critical value of the relevant
parameter, better is the precision on the critical exponents
corresponding to a wider parameter space investigation

N M v w Wo

1 33 0.649561 0.655745 3.18001
10 33 0.9186051 0.871310 2.898458
100 33 0.992424  0.987849 2.986599
1000 31 0.9992492 0.998798 2.998650
10000 31 0.999924  0.999879 2.999865
%) 1 1 3




» Expectation: A correct evaluation of the corrections to the
microscopic potential should lead to a flattening of the
function U(¢) between its minima
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» In the deep infrared the flow is dominated by massless
fluctuations and is also approaching a highly nonlinear regime
difficult to tackle numerically



» |n the deep infrared the flow is dominated by massless
fluctuations and is also approaching a highly nonlinear regime
difficult to tackle numerically

> In this regime, and within a phase with spontaneous symmetry
breaking, these instabilities are related to the approach to a

convex potential (r(y) = (1/y)0(1 —y))
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> In this regime, and within a phase with spontaneous symmetry
breaking, these instabilities are related to the approach to a

convex potential (r(y) = (1/y)0(1 —y))
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» Using the large N flow equation one can show that the
completion of a flat potential is governed by stable infrared
fixed point

u=-1



» In the deep infrared the flow is dominated by massless
fluctuations and is also approaching a highly nonlinear regime
difficult to tackle numerically

> In this regime, and within a phase with spontaneous symmetry
breaking, these instabilities are related to the approach to a

convex potential (r(y) = (1/y)0(1 — y))
1+d =0 = Ulp) = Kk

» Using the large N flow equation one can show that the
completion of a flat potential is governed by stable infrared
fixed point

u=-1

> The effect of the longitudinal mode does not modify the
infrared scaling and therefore the approach to convexity is
super-universal. This fixed solution is also apparent in local
expansions around vanishing field.



Conclusion and perspectives

» The large N limit gives a complete precise analytical picture
of the scaling effective potential

» This information can be used to understand and improve the
calculation of the effective potential at finite N

» The scaling potential in higher dimensions can also be studied
along similar lines

» Fixed points that only exist for large N, dependence on the
regularization scheme, multi-critical models, next to LPA
approximation, etc ...



THANK YOU !



Back up

Convergence Radii of exp. A and B of the Wilson-Fisher fixed point solution, and
location of the convergence-limiting poles (dots) in the complexified p-plane (Ra = 3.18,
6 =98.7° and Rg = 3.18, 05 = 80.68°)
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Back up

Radius of convergence for the expansion C of the Wilson-Fisher fixed point solution and

estimated location of the convergence-limiting pole (dots) in the complexified %—plane.
(Rc = 3.18... and ¢ = 80.68°...)
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