Functional Renormalization Group approach

and

gauge symmetry in QED

— ERG2014 @ Lefkada, Sep. 23, 2014 —
Katsumi Itoh, Jan Pawlowski ${ }^{a}$ and Yuji Igarashi
Faculty of Education, Niigata University
${ }^{a}$ Institute for Theoretical Physics, Heidelberg University

Introduction and Summary

Functional Renormalization Group (FRG): A convincing nonperturbative approach to field theory and condensed matter physics Introduces momentum cutoff Λ
\Rightarrow Dynamics described by RG flow of couplings $g(\Lambda)$ in theory space.

Gauge symmetry ?

Even in the presence of Λ, gauge symmetry realized as a quantum symmetry by imposing Ward-Takahashi (WT) identity for Wilson action S_{Λ}

$$
\Sigma_{\Lambda} \sim\left(\partial S_{\Lambda} / \partial \phi^{A}\right) \delta \phi^{A}-\operatorname{Str}(\partial \delta \phi / \partial \phi)=0
$$

(1) symmetry tr. $\delta \phi^{A}$ depend on S_{Λ}
(2) non-trivial Jacobian factor in functional measure $\mathcal{D} \phi$
$\Sigma_{\Lambda}=0$ defines gauge invariant subspace in theory space.
\Rightarrow Expression of symmetry in FRG.
\diamond Two fundamental equations we have to solve:
i) WT identity $\quad \Sigma_{\Lambda}=0$
ii) RG flow eq. $\quad \partial_{t} \Gamma_{\Lambda}=\operatorname{Str}\left(\partial_{t} R\right)\left[\partial^{2} \Gamma_{\Lambda} / \partial \Phi \partial \Phi+R\right]^{-1} \quad\left(\Lambda \partial_{\Lambda}=\partial_{t}\right)$

We discuss an exact solution to $\Sigma_{\Lambda}=0$ for suitably truncated Wilson action in QED.

- Need to introduce higher dimensional interactions with form factors (momentum dependent 4-fermi couplings).
- Take account of full momentum dependence in WT and flow eq. without using derivative (momentum) expansion.

Results

- Exact evaluation of photon 2-point functions
- Relation which corresponds to $Z_{1}=Z_{2}$
- Relations between form factors in 4-fermi couplings and photon propagator
\diamond Plan of the talk
[1] Derivation of the WT identity
[2] WT identity in QED
[3] Exact solution to WT identity
[4] Momentum dependent flow eq.
[5] Outlook

Derivation of the WT identity

Consider a gauge-fixed theory described by

$$
\mathcal{S}[\varphi]=\frac{1}{2} \varphi \cdot D \cdot \varphi+\mathcal{S}_{I}[\varphi], \quad \quad \varphi \cdot D \cdot \varphi=\int_{p} \varphi^{A}(-p) D_{A B}(p) \varphi^{B}(p)
$$

We rewrite its partition function as

$$
\begin{aligned}
& \mathcal{Z}_{\varphi}[J]=\int \mathcal{D} \varphi \exp (-\mathcal{S}[\varphi]+J \cdot \varphi) \\
& =N_{J} \int \mathcal{D} \phi \exp \left[-\frac{1}{2} \phi \cdot K^{-1} D \cdot \phi+J \cdot K^{-1} \phi\right] \\
& \times \int \mathcal{D} \chi \exp \left[-\frac{1}{2} \chi \cdot(1-K)^{-1} D \cdot \chi-\mathcal{S}_{I}[\phi+\chi]\right]
\end{aligned}
$$

where $\chi=\varphi-\phi$. We have introduced an IR cutoff Λ through a positive function that
behaves as

$$
K(p) \equiv K\left(p^{2} / \Lambda^{2}\right) \rightarrow \begin{cases}1 & \left(p^{2}<\Lambda^{2}\right) \\ 0 & \left(p^{2}>\Lambda^{2}\right)\end{cases}
$$

For cut-off function, we take e.g. $K(p)=e^{-p^{2} / \Lambda^{2}}$.

The Wilson action is defined by

$$
S_{\Lambda}[\phi]=\frac{1}{2} \phi^{A}\left(K^{A}\right)^{-1} D_{A B} \phi^{B}+S_{I, \Lambda}[\phi]
$$

where the interaction part is given by a functional integral

$$
\begin{aligned}
\exp \left[-S_{I, \Lambda}[\phi]\right] & =\int \mathcal{D} \chi \exp \left[-\frac{1}{2} \chi \cdot\left(\Delta_{H}\right)^{-1} \cdot \chi-\mathcal{S}_{I}[\phi+\chi]\right] \\
\Delta_{H} & =(1-K) D^{-1}
\end{aligned}
$$

The partition function for the Wilson action,

$$
Z_{\phi}[J]=\int \mathcal{D} \phi \exp \left[-S_{\Lambda}[\phi]+J \cdot K^{-1} \phi\right]
$$

is related to that for the original one by

$$
\mathcal{Z}_{\varphi}[J]=N_{J} Z_{\phi}[J]
$$

where the normalization factor is given by

$$
N_{J}=\exp \frac{1}{2}\left[-(-)^{\epsilon\left(J_{A}\right)} J_{A}\left(\frac{1-K}{K}\right)^{A}\left(D^{-1}\right)^{A B} J_{B}\right]
$$

\diamond We define the WT operator

$$
\begin{gathered}
\Sigma_{\Lambda}[\phi]=K^{A}\left[\frac{\partial^{r} S_{\Lambda}}{\partial \phi^{A}} \delta \phi^{A}-(-)^{\epsilon_{A}} \frac{\partial^{l} \delta \phi^{A}}{\partial \phi^{A}}\right] \\
\Sigma_{\Lambda}[\phi]=0
\end{gathered}
$$

signals for the presence of BRST (quantum) symmetry.
To find $\delta \phi$, take functional average of the WT op. for the original theory with standard BRST symmetry

$$
\begin{aligned}
\Sigma[\varphi] & =\frac{\partial^{r} \mathcal{S}}{\partial \varphi^{A}} \delta \varphi^{A}-(-)^{\epsilon_{A}} \underbrace{\frac{\partial^{l} \delta \varphi^{A}}{\partial \varphi^{A}}}_{=0} \\
\delta \varphi^{A} & =R_{B}^{A} \varphi^{B} .
\end{aligned}
$$

where R_{B}^{A} are field independent coeffients, and $\delta \varphi^{A}$ stand for classical (conventional) BRST transformations for linear symmetry. Use them as a "seed" for quantum symmetry.

Through relations

$$
\begin{aligned}
& \int \mathcal{D} \varphi \delta \varphi \exp (-\mathcal{S}[\varphi]+J \cdot \varphi)=N_{J} \int \mathcal{D} \phi K^{-1} \delta \phi \exp \left(-S_{\Lambda}[\Phi]+J \cdot K^{-1} \Phi\right) \\
& \int \mathcal{D} \varphi \Sigma[\varphi] \exp (-\mathcal{S}[\varphi]+J \cdot \varphi)=N_{J} \int \mathcal{D} \phi \Sigma_{\Lambda}[\phi] \exp \left(-S_{\Lambda}[\Phi]+J \cdot K^{-1} \Phi\right),
\end{aligned}
$$

we find

$$
\delta \phi^{A}=R_{B}^{A}\left[\phi^{B}\right]_{\Lambda}, \quad\left[\phi^{B}\right]_{\Lambda}=\phi^{B}-\left(\Delta_{H}\right)^{B C} \frac{\partial^{l} S_{I, \Lambda}}{\partial \phi^{C}}
$$

where $\left[\phi^{A}\right]_{\Lambda}$ are "composite operators" for fields ϕ^{A}. They obey RG flow equations:

$$
\partial_{t} \mathcal{O}_{\Lambda}[\phi]=-\frac{\partial^{r} S_{I, \Lambda}}{\partial \phi^{A}}\left(\partial_{t} \Delta_{H}\right)^{A B} \frac{\partial^{l} \mathcal{O}_{\Lambda}}{\partial \phi^{B}}+\frac{1}{2}(-)^{\epsilon_{A}\left(1+\epsilon_{\mathcal{O}}\right)}\left(\partial_{t} \Delta_{H}\right)^{A B} \frac{\partial^{l} \partial^{r} \mathcal{O}_{\Lambda}}{\partial \phi^{B} \partial \phi^{A}} .
$$

We also obtain general expression of the WT op. for linear gauge symmetry

$$
\Sigma_{\Lambda}[\phi]=K^{A}\left\{\frac{\partial^{r} S_{\Lambda}}{\partial \phi^{A}} R_{B}^{A}\left[\phi^{B}\right]_{\Lambda}+(-)^{\epsilon_{A}} R_{B}^{A}\left(\Delta_{H}\right)^{B C} \frac{\partial^{l} \partial^{r} S_{I, \Lambda}}{\partial \phi^{C} \partial \phi^{A}}\right\} .
$$

WT identity for QED

Consider the Wilson action $S_{\Lambda}[\phi]=S_{0, \Lambda}+S_{I, \Lambda}$ for the fields $\phi^{A}=\left(a_{\mu}, \bar{\psi}_{\hat{\alpha}}, \psi_{\alpha}, c, \bar{c}\right)$.
The kinetic part of the Wilson action is given by

$$
\begin{aligned}
& S_{0, \Lambda}=\frac{1}{2}\left(K^{A}\right)^{-1} Z_{A} \phi^{A} D_{A B} \phi^{B} \\
& =\int_{p} K^{-1}(p)\left[\frac{Z_{3}}{2} a_{\mu}(-p) p^{2}\left\{\delta_{\mu \nu}-\left(1-\left(Z_{3} \xi_{0}\right)^{-1}\right) \frac{p_{\mu} p_{\nu}}{p^{2}}\right\} a_{\nu}(p)+\bar{c}(-p) i p^{2} c(p)\right] \\
& +\int_{p} K^{-1}(p) Z_{2} \bar{\psi}(-p) p p \psi(p)
\end{aligned}
$$

where we have introduced the renormalization constants, Z_{2}, Z_{3}. The classical BRST tr.

$$
\begin{aligned}
\delta_{c l} a_{\mu}(p) & =-i p_{\mu} c(p), & & \delta_{c l} \bar{c}(p)=\xi_{0}^{-1} p_{\mu} a_{\mu}(p) \\
\delta_{c l} \psi(p) & =-i e_{0} \int_{q} \psi(q) c(p-q), & & \delta_{c l} \bar{\psi}(-p)=i e_{0} \int_{q} \bar{\psi}(-q) c(q-p)
\end{aligned}
$$

fix the coefficients R_{B}^{A} in our general formula for quantum symmetry. Here, e_{0}, ξ_{0} are gauge coupling and gauge fixing parameters which are constants.

The WT operator for QED is constructed as

$$
\begin{aligned}
\Sigma_{\Lambda}[\phi]= & \int_{p}\left\{\frac{\partial S_{\Lambda}}{\partial a_{\mu}(p)}\left(-i p_{\mu}\right) c(p)+\frac{\partial^{r} S_{\Lambda}}{\partial \bar{c}(p)} \xi_{0}^{-1} p_{\mu} a_{\mu}(p)\right\} \\
& -i e_{0} \int_{p, q}\left\{\frac{\partial^{r} S_{\Lambda}}{\partial \psi_{\alpha}(q)} \frac{K(q)}{K(p)} \psi_{\alpha}(p)-\frac{K(p)}{K(q)} \bar{\psi}_{\hat{\alpha}}(-q) \frac{\partial^{l} S_{\Lambda}}{\partial \bar{\psi}_{\hat{\alpha}}(-p)}\right\} c(q-p) \\
& -i e_{0} \int_{p, q} U_{\beta \hat{\alpha}}(-q, p)\left\{\frac{\partial^{l} S_{\Lambda}}{\partial \bar{\psi}_{\hat{\alpha}}(-p)} \frac{\partial^{r} S_{\Lambda}}{\partial \psi_{\beta}(q)}-\frac{\partial^{l} \partial^{r} S_{\Lambda}}{\partial \bar{\psi}_{\hat{\alpha}}(-p) \partial \psi_{\beta}(q)}\right\} c(q-p),
\end{aligned}
$$

where

$$
U(-q, p)=Z_{2}^{-1}\left[K(q) \frac{1-K(p)}{\not p}-K(p) \frac{1-K(q)}{\not q}\right]
$$

Exact solution to WT identity

$$
S_{I, \Lambda}[\phi]=\Gamma_{I, \Lambda}[\Phi]+\frac{1}{2}(\Phi-\phi) \cdot(1-K)^{-1} D \cdot(\Phi-\phi)
$$

To construct interaction part $S_{I, \Lambda}[\phi]$, we first specify its 1 PI part, namely effective average action $\Gamma_{I, \Lambda}[\Phi]$, imposing for simplicity chiral symmetry on the fermionic sector. We introduce some form factors in 4-fermi interactions:

$$
\begin{aligned}
& \Gamma_{I, \Lambda}[\Phi]=\int_{p}\left[\frac{Z_{3}}{2} A_{\mu}(-p) \mathcal{M}_{\mu \nu}(p) A_{\nu}(p)+Z_{2} \sigma(p) \bar{\Psi}(-p) \not p \Psi(p)\right] \\
& \quad-e Z_{2} Z_{3}^{1 / 2} \int_{p, q} \bar{\Psi}(-p) A(p-q) \Psi(q)+\frac{Z_{2}^{2}}{2 \Lambda^{2}} \int_{p_{1}, \cdots, p_{4}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right) \\
& \quad \times\left\{h_{S}(s, u)\left[(\bar{\Psi} \Psi)^{2}-\left(\bar{\Psi} \gamma_{5} \Psi\right)^{2}\right]+h_{V}(s, u)\left[\left(\bar{\Psi} \gamma_{\mu} \Psi\right)^{2}+\left(\bar{\Psi} \gamma_{5} \gamma_{\mu} \Psi\right)^{2}\right]\right. \\
& \left.\quad+\frac{1}{\Lambda^{2}}\left(p_{1}+p_{4}\right)_{\mu}\left(p_{2}+p_{3}\right)_{\nu} h_{V^{\prime}}(s, u)\left[\left(\bar{\Psi} \gamma_{\mu} \Psi\right)\left(\bar{\Psi} \gamma_{\nu} \Psi\right)+\left(\bar{\Psi} \gamma_{5} \gamma_{\mu} \Psi\right)\left(\bar{\Psi} \gamma_{5} \gamma_{\nu} \Psi\right)\right]\right\}
\end{aligned}
$$

Here

$$
\mathcal{M}_{\mu \nu}(p)=P_{\mu \nu}^{T} \mathcal{T}(p)+P_{\mu \nu}^{L} \mathcal{L}(p), \quad P^{T}=\delta_{\mu \nu}-p_{\mu} p_{\nu} / p^{2}, \quad P^{L}=p_{\mu} p_{\nu} / p^{2}
$$

and s, u are Mandelstam variables.
$S_{I, \Lambda}[\phi]$ is constructed by using the Legendre transformation :

$$
\begin{aligned}
& S_{I, \Lambda}[\phi]=\Gamma_{I, \Lambda}[\Phi]+\frac{1}{2}(\Phi-\phi) \cdot(1-K)^{-1} D \cdot(\Phi-\phi) \\
& =\Gamma_{I, \Lambda}[\phi]+\frac{Z_{3}}{2} \int_{p} a_{\mu}(-p)\left[\sum_{n=1}(-)^{n}\left[\left(\mathcal{M} \Delta_{H}\right)^{n}\right]_{\mu \lambda}(p) \mathcal{M}_{\lambda \nu}(p)\right] a_{\nu}(p) \\
& -e Z_{2} Z_{3}^{1 / 2} \int_{p, q} \sum_{n=1}(-)^{n}\left[\left(\mathcal{M} \Delta_{H}\right)^{n}\right]_{\mu \nu}(p-q) a_{\nu}(p-q)\left(\bar{\psi} \gamma_{\mu} \psi\right) \\
& -\frac{Z_{2}^{2} e^{2}}{2} \int_{p_{1}, \cdots, p_{4}}(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}+p_{3}+p_{4}\right)\left(\bar{\psi} \gamma_{\mu} \psi\right)\left(\bar{\psi} \gamma_{\nu} \psi\right)\left(\Delta_{G}\right)_{\mu \nu}\left(p_{1}+p_{2}\right)
\end{aligned}
$$

where additional terms to $\Gamma_{I, \Lambda}$ are 1 P reducible contributions. $\left(\boldsymbol{\Delta}_{G}\right)_{\mu \nu}(p)=$ $Z_{3}^{-1}\left[P_{\mu \nu}^{T} T(p)+P_{\mu \nu}^{L} L(p)\right]$ is full photon propagator constructed with photon 2-point functions

$$
T(p)=\frac{1-K}{p^{2}+(1-K) \mathcal{T}(p)}, \quad L(p)=\frac{\xi(1-K)}{p^{2}+\xi(1-K) \mathcal{L}(p)}, \quad \xi=Z_{3} \xi_{0}
$$

Substitute $S_{\Lambda}=S_{0, \Lambda}+S_{I, \Lambda}$ into the WT identity $\Sigma_{\Lambda}[\phi]=0$, which can be expanded in polynomial of ϕ^{A}. Consider two terms $a_{\mu} \times c$ and $\bar{\psi} \times \psi \times c$ in this expansion. For simplicity, we assume $\sigma(p)=0$ for fermionic 2 -point function. From $a_{\mu}(p) \times c(-p)$ term, we have

$$
Z_{3} p_{\nu} \mathcal{L}(p)=-e_{0} e Z_{2} Z_{3}^{1 / 2} \int_{q} \operatorname{Tr}\left[U(-p-q, q) \gamma_{\nu}\right]
$$

From $\bar{\psi}(p) \times \psi(-q) \times c(q-p)$ term, we have second WT relation

$$
\begin{aligned}
& \left(e_{0} Z_{2}-e Z_{2} Z_{3}^{1 / 2}\right)(\not p-\not q)-2 e_{0} Z_{2}^{2} \int_{k}\left[\frac { 1 } { \Lambda ^ { 2 } } \left\{\left(h_{S}-2 h_{V}\right)\left[k^{2},(p+q)^{2}\right]\right.\right. \\
& \left.-2 h_{V}\left[(p+q)^{2}, k^{2}\right]\right\}+e^{2} T\left(k^{2}\right)+\frac{1}{\Lambda^{4}}\left\{2(p-q)^{2} h_{V^{\prime}}\left[k^{2},(p+q)^{2}\right]\right. \\
& \left.\left.+k^{2} h_{V^{\prime}}\left[(p+q)^{2}, k^{2}\right]\right\}\right] U(-q-k, p+k) \\
& -e_{0} Z_{2}^{2} \int_{k}\left[\frac{2}{\Lambda^{4}} h_{V^{\prime}}\left[(p+q)^{2}, k^{2}\right]+e^{2} \frac{1}{k^{2}}\left\{T\left(k^{2}\right)-L\left(k^{2}\right)\right\}\right] \not k U(-q-k, p+k) \not k=0 .
\end{aligned}
$$

This constraint splits into two conditions: constant $\times(\underline{p}-q q)$ and one-loop part. They should separately vanish. The first one gives

$$
e_{0}=Z_{3}^{1 / 2} e .
$$

This corresponds to the well-known WT relation in the standard realization of gauge symmetry in QED: $Z_{1}=Z_{2}$ for $Z_{1}=Z_{2} Z_{3}^{1 / 2} Z_{e}$ with $e=Z_{e} e_{0}$.

On the other hand, one-loop part gives

$$
\begin{aligned}
& \frac{1}{\Lambda^{2}}\left\{\left(h_{S}-2 h_{V}\right)\left[k^{2},(p-q)^{2}\right]-2 h_{V}\left[(p-q)^{2}, k^{2}\right]\right\} \\
& =e^{2}\left\{T\left[(p-q)^{2}\right]-L\left[(p-q)^{2}\right]\right\}-\frac{e^{2}}{2}\left\{T\left(k^{2}\right)+L\left(k^{2}\right)\right\} \\
& \frac{1}{\Lambda^{4}} h_{V}\left[(p+q)^{2}, k^{2}\right]=-\frac{e^{2}}{2 k^{2}}\left\{T\left(k^{2}\right)-L\left(k^{2}\right)\right\}
\end{aligned}
$$

These are relations between 4 -fermi interactions and photon propagator.
Note that derivative expansion will give, $1-Z_{3}^{1 / 2} e / e_{0} \simeq\left[h_{S}(0,0)-4 h_{V}(0,0)\right]$.

Remarkably, longitudinal component of photon 2-point function \mathcal{L} can be evaluated exactly for a specific cutoff function $K(p)=e^{-p^{2} / \Lambda^{2}}$ using some formula for the modified Bessel functions:

$$
\int_{0}^{\pi} d \theta e^{2 p k \cos \theta} \sin ^{2} \theta=\frac{\pi}{2 p k} I_{1}(2 p k), \quad \int_{0}^{\infty} d k e^{-k^{2}} I_{1}(2 p k)=\frac{p}{2}{ }_{1} F_{1}\left(1,2 ; p^{2}\right)
$$

we obtain

$$
\mathcal{L}\left(p^{2}\right)=-e^{2} \frac{\Lambda^{2}}{2 \pi^{2} \bar{p}^{4}}\left[1-\exp \left(-\bar{p}^{2} / 2\right)-\bar{p}^{2}\left(1-\frac{1}{2} \exp \left(-\bar{p}^{2} / 2\right)\right)\right]
$$

where we have used $e_{0}=Z_{3}^{1 / 2} e$ to eliminate e_{0}, and $\bar{p}^{2}=p^{2} / \Lambda^{2}$. To fix transverse part \mathcal{T}, we use RG flow equations.

Momentum dependent flow equations

For photon 2-point functions $\propto e^{2}$ in RG flow equation we have

$$
\begin{aligned}
& \frac{Z_{3}}{2} \int_{p} A_{\mu}(-p)\left[P_{\mu \nu}^{T}\left\{2 \eta_{A} p^{2}-2 \mathcal{T}(p)\right\}+(-2) P_{\mu \nu}^{L} \mathcal{L}(p)\right] A_{\nu}(p) \\
& =-e^{2} Z_{3} \int_{p, q} 2 K^{\prime}(q)(1-K(p+q))^{2} \frac{1}{(p+q)^{2}} \operatorname{Tr}[A(-p)(\not p+\not q) A(p) \notin]
\end{aligned}
$$

Rhs can be exactly evaluated to give

$$
\begin{aligned}
& \text { rhs }=-Z_{3} \frac{e^{2}}{2 \pi^{2}} \int_{p} A_{\mu}(-p)\left[P_{\mu \nu}^{T} \frac{1}{4 p^{4}}\left\{4-\left(4+2 p^{2}-p^{4}\right) \exp \left(-p^{2} / 2\right)\right\}\right. \\
& \left.-P_{\mu \nu}^{L} \frac{1}{p^{4}}\left\{1-p^{2}-\left(1-\frac{p^{2}}{2}\right) \exp \left(-p^{2} / 2\right)\right\}\right] A_{\nu}(p)
\end{aligned}
$$

Since p^{2} term in transverse part here generates well-known anomalous dimension for photon field $\eta_{A}=e^{2} / 12 \pi^{2}$, we subtract it to find \mathcal{T}

$$
\begin{aligned}
\mathcal{T}\left(p^{2}\right)-\eta_{A} p^{2} & =\frac{e^{2}}{8 \pi^{2} p^{4}}\left\{4-\left(4+2 p^{2}-p^{4}\right) \exp \left(-p^{2} / 2\right)\right\} \\
\mathcal{T}\left(p^{2}\right) & =\frac{\Lambda^{2} e^{2}}{8 \pi^{2} \bar{p}^{4}}\left\{4+\frac{2 \bar{p}^{6}}{3}-\left(4+2 \bar{p}^{2}-\bar{p}^{4}\right) \exp \left(-\bar{p}^{2} / 2\right)\right\} .
\end{aligned}
$$

\mathcal{L} appeared here is exactly the same as the one obtained by WT identity.
In this way, we fix photon 2-point functions.

Note that the same constant mass term appears in both \mathcal{T} and \mathcal{L}

$$
\mathcal{T}=\mathcal{L}=\frac{3 e^{2}}{16 \pi^{2}} \Lambda^{2}+\mathcal{O}\left(\bar{p}^{2}\right)
$$

Outlook

$\diamond \Sigma_{\Lambda}=0$ (almost) determines S_{Λ}.
All 4-fermi couplings expressed in terms of e^{2} and photon 2-point functions ?
\Leftarrow careful analysis of flow eq.
\diamond Exact evaluation of photon 2-point functions is interesting but only possible in QED with simplified fermionic sector.
\Rightarrow For more complicated cases such as YM theory, need to develop suitable approximation method which replaces derivative expansion.

Taking account of momentum dependence in WT identity and RG flow eq. will give new insights into FRG !

