Non-Fermi liquid vs (topological) Mott insulator
in electronic systems with quadratic band
touching in three dimensions
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Quadratic band crossing in 2D: (e. g. bilayer graphene)

Irreducible Hamiltonian: (¢ = cos(2a), s = sin(2a) )
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With short-range interaction:

Hy =

H = /dr W (r)HY(r) + Udnq(r)ona(r)|

has an instability at weak coupling:
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towards QAH (gapped) ( |sin(2«)| > /2/3 ) or nematic
(gapless) phase. (Sun et al, 2010, Dora, IH, Moessner, 2014)
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Three dimensions: gapless semiconductors (gray tin, HgTe,...)

Luttinger spin-orbit Hamiltonian (J= 3/2) (Luttinger, PR 1956)
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with (twice degenerate) eigenvalues: (with full rotational symmetry)
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Density of states now vanishes at the QTP: short-range interactions are
Irrelevant, but there Is no screening.

What is the effect of long-range Coulomb interaction?



Without the hole band empty, at — zero” (low) density:

Wigner crystal !

With the hole band filled and particle band empty: the system is

“critical”

In the RG language, changing the cutoff causes the charge to ~ flow”
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(Coulomb interaction ~ 1/p% ) (Abrikosov, JETP 1974)



Below and near the upper critical dimension, dup = 4, the system is
In the non-Fermi liquid interacting phase, with the charge at the
fixed point value:

e2 = 15¢/76 + O(€?)
with the small parameter
e =4 —d
and the dynamical critical exponent z < 2.
This implies power-laws in various responses, such as specific heat:
~ Td/7 ~ TL17
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(Abrikosov, JETP 1974, Moon, Xu, Kim, Balents, PRL 2014)
Easy way to get a NFL phase in 3D!

Or not?



The picture must somehow break down before the dimension
reaches d = 2; a short range coupling flows like
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and becomes marginal in d=2.

What can happen to the NFL stable fixed point?



The mechanism : collision of UV and IR fixed points (Kaveh, IH,
2005, Gies, Jaeckel 2006, Kaplan, Lee, Son, Stephanov, 2009). First
we rewrite the Luttinger Hamiltonian as :

H(k) = e(k) + 2d,I°
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where, (Abrikosov, JETP 1974, Murakami et al, PRB 2004)

e(k) = k2, dy(k) = —3ET ks,
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dy = —7(k£ — k),
1
ds = =5 (2kz — ky — ky).

and the Dirac matrices satisfy:
(T T%) = 204



The full interacting theory, with long-range and short-range
Interactions is then: (IH and Lukas Janssen, PRL 2014)
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and appears (but actually is not!) O(5) symmetric. Change of the
cutoff now amounts to (to one loop)
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( Here, the dimensionless charge is defined as: €? = 2me2 /(47h%e) )



Without the long-range interaction (e=0), the theory possesses a
quantum critical point (QCPo); weakly coupled close to d=2:
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Close to and below d=4 there is a (IR stable) NFL fixed point, but
also a (UV stable) quantum critical point at strong interaction: (d=3.5)
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They get closer, but remain separated in the coupling space!



At some “lower critical dimension” NFL and QCP collide:
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In one loop calculation, this occurs at  d; = 3.26240, and thus
above, but close to three dimensions.



Finally, below di the NFL and QCP become complex, and there is
only a runaway flow left:
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The system is unstable.



The instability, and the nature of the QCP:

At d=di the NFL and QCP merge at (0.002, -0.153). Neglecting gz, the

flow of gz in the large-N theory is :
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For N >>1, introducing the order parameter xi = 2¢g2(¥T;¥) the
saddle point at

| T dp di(p) + xi
Xi = —4g2 N / : =
(27) \/(d;(P) + x;)

IS an exact solution. The O(5) and the rotational symmetry are

therefore broken at
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which is precisely the RG fixed point.



At large negative g2 the system should develop anisotropic gap and,

}(5>0

The gap i1s minimal at the equator (in momentum space) at

p* = X5/2

and the system looks as if under strain. The resulting ground state:

(topological) Mott insulator
( IH and Janssen, PRL 2014 )

The state is equivalent in symmetry to ~uniaxial nematic”.



The fate of NFL: if di is above but close to d=3, the flow becomes
slow close to (complex!) NFL fixed point. The RG "“escape time” is
long:
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with non-universal constants C and B. There iIs wide crossover
region of the NFL behavior within the temperature window

(Te. T%)
with the critical temperature,
Te = T.by~

And the characteristic energy scale for interaction effects as
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Assuming a small band mass
m/mel = 1/50

and a high dielectric constant
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still gives a reasonable

1w ~10 K =100 K

and a detectable
T. ~ T,/100



Conclusion:

1) Abrikosov’s non-Fermi liquid phase at T=0 exists only In
dimensions d:

diow < d < dwyp= 4
with lower critical dimension diow > 2, and probably close to three.
2) Below diow the system develops a gap, and most likely becomes a
(topological) Mott insulator. (The other possibility is a s-wave
superconductor, with an isotropic gap.)

3) NFL shows up in a possibly wide crossover regime of energy scales.

4) Gray tin or mercury telluride should be a (topological) Mott insulator
at T=0, and at zero doping!
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