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Introduction

o if SUSY realized in nature = FRG appropriate
nonperturbative tool (strong coupling phenomena, coll.
condensation phenomena)

(]

completion of lattice studies (formulation manifest
supersymmetric)

e advantage in studying QM: exact results known (Ey, Fex)

single-well potential = easily treated over whole range of
couplings

double-well potential = allows for tunneling, described in
terms of instantons = challenging
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Goals:

1 wverify convergence of supersymmetric ,,derivative
expansion within FRG framework

2 analysis of non-convex classical potentials, tunneling
processes — Synatschke et al., ’09, ’10

3 investigate dynamical SUSY breaking < talk by T. Hellwig

4 generalization to more advanced theories
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D=+ 0 +1)0+00F

e superpotential: M M\&w
W (@) = W(¢) + (00 +y0)W'(¢) + 00(FW'(¢) - W" (¢) 1)
e supercharges:
Q=i05+00;; Q=i0p+00-; {Q,Q}=2i0;
= generate SUSY variations: 0, = €Q — €Q

@ supercovariant derivatives:

D =i0;-00;; D=i0p-00.; {D,D}=-2i0;
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o on-shell action = EOM F = —iW'(¢):
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®] = [drdfdf [-3@K® +iW (®)]; K =3(DD-DD)
So.Fp] = fdr [56° ~ i + 5 F2 +iFW'(¢) = iW" ()00 ]
e on-shell action = EOM F = —iW'(¢):

Sonl,9,9] = [ dr [36% — ithp + L (W' (9))° - iW" (@)

bosonic potential Yukawa-interaction
e SUSY preserved: Ey = 0, highest power of W (¢) even

e SUSY spont. broken: Ej > 0, highest power of W (¢) odd
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I Formalism

transition:

: : determined by
microscopic

. effective

; flow equation i .
action Wotterich. 03 action

Fk—>A =S Fk—>0 =T

-1
8k1“k = %STI‘ [8kRk. (F,(f) + Rk) :|

Horikoshi et al., 98

Kapoyannis, Tetradis, 00

Zapalla, 01

Weyrauch, ’06

Synatschke, Bergner, Gies, Wipf, 09
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III Projection Scheme

IT Truncation Scheme

e derivative expansion in (K)", off-shell formulation
e truncation of 'y in NNLO:
D] = [drdfdf [iWy, - 1 Zk K Zy + 1 K2® + £V}, (K®)?]
° general form of regulator functional:
ASp[®] =3 L [drdfdf ®Ry(D,D)®
with Rk(D, D) =ir(-02,k)+Z}(®)?ra(-02, k) K

= manifestly supersymmetric cutoff action ASg;
SUSY links regulators, e.g. (p?re,r2,pr2) <> (¢, F, /1))
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I Formalism
Derivation of Flow Equations in NNLO II Truncation Scheme

III Projection Scheme

IIT Projection Scheme

o nlilo,0.4.5)-0 = [ dT [iOWLF + 50k(Z;)2 F° + 0, Y, F°]

520, T, _
® T STHDETD) & (F,,6F,56)=0 = [ dry [0 + Yi)]

= [ dri [0pX]

o regulator functions: r; =k, 19 =0
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Effective Potential

o unbroken SUSY: UV initial conditions:
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o unbroken SUSY: UV initial conditions:
W] =e+mo+gep®+ap®, Zi(¢)=1, Yy=Xp=0

e running scalar potential Vi(¢): EOM of F into I'y, og

Vi(0) = zrvz (VBWiYh + ZiF = Z2) (6WiYe + Z;' = Z2\/3W[Ys + Z;1)
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W] =e+mo+gep®+ap®, Zi(¢)=1, Yy=Xp=0

e running scalar potential Vi(¢): EOM of F into I'y, og
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Effective Potential
Energy Gap

Results N =1 Wess-Zumino model in d =3

Energy Gap
e energy gap E7 — Ey: from pole of propagator at ¢pin:

E} = limgo 2= (Z,;4 + X W) - Z2\/ ZA + 2XkW,;')
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e breakdown of NNLO at g ~ 2 (Vj, € C, generation of further

(large) masses — Heilmann et al., ’12)
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N =1 Wess-Zumino model in d =3
o Goal: analysis of Wilson-Fisher type fixed-point:
SUSY /sp. broken Zs < sp. broken SUSY/Zy

o derivation in Minkowski spacetime (< Synatschke et al, ’10) =
Wick-rotation = similar flows as in QM

° adequate regulator functional:
ASK[®] = 5 [ dz®[2r - Z'(®)*r K| @
== 07 ry = (K*[p* - 1)O(K*[p® - 1)
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N =1 Wess-Zumino model in d =3
o Goal: analysis of Wilson-Fisher type fixed-point:
SUSY /sp. broken Zs < sp. broken SUSY/Zy

o derivation in Minkowski spacetime (< Synatschke et al, ’10) =
Wick-rotation = similar flows as in QM

° adequate regulator functional:
ASK[®] = 5 [ dz®[2r - Z'(®)*r K| @

=7 = 0, o = (kQ/pi_ 12@(k2/p -1)
= no BFA, choose ® = ¢ = ¢

Convergence of Derivative Expansion in Supersymmetric QM 12/16




Effective Potential
Energy Gap

g1
Results N =1 Wess-Zumino model in d=3

Wilson-Fisher fixed point
o dimensionless quantities: t = In(k/A), n = -%1n(Z"%(¢0))
[¢, W7 ZI,X,Y] = (%727();_17_%) = [X,’LU,Z’,I,y]

Convergence of Derivative Expansion in Supersymmetric QM 13/16



Effective Potential
Energy Gap

Results N =1 Wess-Zumino model in d=3

Wilson-Fisher fixed point
o dimensionless quantities: t = In(k/A), n = -%1n(Z"%(¢0))
[p,W,Z' . X,Y] = (%,2,0,—1,—%) =[x, w, 2, z,y]
e asymptotics of FP from canonical & anomalous scaling:

NX(HZ) f~x (1+n) T NX727yx_ ~X73 for |X|—>°O
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Effective Potential
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“ g1
Results N =1 Wess-Zumino model in d=3

Wilson-Fisher fixed point
o dimensionless quantities: t = In(k/A), n = -%1n(Z"%(¢0))
[(rb? W’Z’7X7Y] = (%72703_17_%) = [X7wazlaxay:|
° asymptotics of FP from canonical & anomalous scaling:
~ T o ey T gy w2y w3 f -
X X Ta X Ye v X for [x] - 00
° superscaling relation Vd > 2:

O =1/vy = (‘1;277) (“interaction”-flows w’-independent)
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Results N =1 Wess-Zumino model in d=3

Wilson-Fisher fixed point
o dimensionless quantities: t = In(k/A), n = -%1n(Z"%(¢0))
[p,W,Z' . X,Y] = (%,2,0,—1,—%) =[x, w, 2, z,y]
e asymptotics of FP from canonical & anomalous scaling:
wl X, 2 T 0y 2~ x® for ] > oo
o superscaling relation Vd > 2:

O =1/vy = (d ) (“interaction”-flows w’-independent)

H w;, (0) X0 Ui S2) 0, O,
LPA -0.0420 0.147 3/2 -0.702 -3.800
NLO -0.0292 0.150 0.186 1.407 -0.771 -1.642

NNLO || -0.0294 0.149 0.180 1.410 -0.715 -1.490
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Effective Potential
y Gap
Results

N =1 Wess-Zumino model in d=3

by B. Knorr

e numerical solution of 9;O, =0 via spectral methods < poster
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ive Potential

Gap
Results 1 Wess-Zumino model in d =3

e numerical solution of 9;O, =0 via spectral methods < poster
by B. Knorr

@ no background field approximation (z'(xo) =1 = 2'(x))
since reg. artificallly suppressed for |x| - oo
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Energy Gap

Results N =1 Wess-Zumino model in d=3

Summary

o Goal: testing supercovariant derivative expansion

(1) unbroken SUSY QM: Ej rel. error of 1% in NNLO,

very good for weak couplings g

(2) spont. broken SUSY QM: Ej, rel error of 4% in NLO,
very good for strong couplings ¢

(3) Wess-Zumino model in d = 3: superscaling relation,
convergence of ©; of Wilson-Fisher fixed point

Convergence of Derivative Expansion in Supersymmetric QM



Results

References

(1] 10.09.2014:
http://fatalphysics.weebly.com/uploads/2/9/7/8/29780301/1297348orig.jpg

Convergence of Derivative Expansion in Supersymmetric QM 16/16



	Introduction
	N=1 SUSY QM

	Derivation of Flow Equations in NNLO
	IFormalism
	II Truncation Scheme
	III Projection Scheme

	Results
	Effective Potential
	Energy Gap
	N=1 Wess-Zumino model in d=3


