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Matrix models for 2-d quantum gravity
@ Continuum limit as RG fixed point

@ New FRG tools and results jwith T. Koslowski, 2013/14]

Relation to asymptotic safety?



What is the fundamental nature of spacetime?

Quantum gravity: spacetime fluctuations at the Planck scale
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Path-integral for quantum gravity

is e~ > 7 What fluctuates ?

f spacetimes fspacetimes

metric/curvature ~‘ ~

dimensionality

topology ‘ °

matl’iX/tenSOI’ mOde|S [Weingarten, Ambjorn, Durhuus, Frohlich, Kazakov, Migdal, Boulatov, 1980’s]
(group field theories/ tensor track [rreidel, Gurau, Oriti, Rivasseau, 2000'5]):
metric & topology fluctuate

evaluate path integral by discretization
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Building quantum spacetime

Sap | Dee o] — 5y e

superposition of quantum spacetimes — sum over simplicial complexes

Main challenge: What is the continuum limit?

(TenSOI’ mOdelS/ group f|e|d theories [Ben Geloun, Freidel, Gurau, Oriti, Rivasseau. ])



Spacetime as a “condensate” of building blocks
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Spacetime as a “condensate” of building blocks
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technically:

physical phase transition from prege-
ometric phase (Big Bang?)

ight
Pattern  Dark Ages

or
mathematical transition to the only

physical phase

Renormalization Group fixed point



two-dimensional quantum gravity
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Matrix model for two-dimensional quantum gravity
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Matrix model for two-dimensional quantum gravity

2 d: fd2x\/§R =4y

—_—
X =2 x=0

assume Einstein-Hilbert action:

S=1oc [ d*x\/E(R—2N) = J=x —2M\A

—2AA+ L
Lgrav ~ Z ngWe TacX

topologies
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Matrix model for two-dimensional quantum gravity

—2AA+ =
Zgrav n~ Z nguue tacx,

topologies

reformulate as hermitian matrix model: ¢ is N x N matrix

Zgrau ~In ( [ dgpen" 815"

Feynman diagrams:

dual is “squarulation”

Feynman diagram expansion

AT

yields sum over all “squarulations”

similar: d-dimensional gravity <> rank-d tensor model




Matrix model for two-dimensional quantum gravity

continuum limit: Zgray ~ In (f d¢e‘tr¢2_gtr¢4>
NEN
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s 55 a0 ia ol
EEEE W = oo
i (cf. phase transition)
— universal behavior!
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Large N limit

Zgay = >, NP7, = N — co: h=0 dominates
Doub|e—sca|ing Ilmlt [Brézin& Kazakov, Gross & Migdal, Douglas & Shenker, 1990]
N — oo and g — g such that N=2/ is compensated

N(g — gc)*~ /2 = const., v =—1/2.

N g(N) :gc_|_ (g)_2/(2_75)

-0
— looks like RG fixed-point behavior: g(k) = g« + ¢ <k£0)



Double-scaling (continuum) limit <+ Renormalization Group fixed point
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Double-scaling (continuum) limit <+ Renormalization Group fixed point
—2/(2—s -0
g(N) = ge+ ()7 6 g(k) = g+ ()

8c < 8B«

N < k

2
2—7s

— 0
perturbative approach [srin, zinn-Justin, 1992]
FRG approach [ae, Tim Koslowski, 2013]
main advantage:

extension to higher-dimensional models conceptually clear
(technically: larger theory space [rivasseau, 2014))
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Renormalization group scale

basic RG requirement: distinguish “low-momentum” from
“high-momentum” quantum fluctuations

quantum gravity: metric fluctuates

discrete approaches: based on “pre-geometric” building blocks
= No notion of momentum

use N tO Set a Scale [Zinn-Justin, Brezin, 1993; Oriti, Rivasseau, Gurau..., since 2010]

infrared ultraviolet

N — o0 no degrees of freedom
integrated out (ultraviolet)

N — 0 all degrees of freedom
integrated out (infrared)



FRG for matrix models

regulator ¢, RN (3, b)abed®ed With Ry(a, b) = (fTNb — ) 0(1— a;jvb)

inspired by “Litim-cutoff’



FRG for matrix models

regulator ¢,,5Rn (3, blabcatreq with Ru(a, b) = (2% —1) 0 (1 - 3)

inspired by “Litim-cutoff’

effective action [y from Zy = [ d¢ e Sl¢l—3tréRno



FRG for matrix models

regulator ¢, pRn(a, b)abcdPed With Ry(a, b) = (fTNb — > 0 (1 — "";,rvb)
inspired by “Litim-cutoff’

effective action [y from Zy = [ d¢ e Sl¢l—3tréRno

Wetterich-equation adapted for discrete case:

NONTy = Ltr (T3 + Ry) " NowRw



FRG for matrix models

regulator ¢, pRn(a, b)abcdPed With Ry(a, b) = (fTNb — 1) 0 (1 — ""+b)

inspired by “Litim-cutoff’

effective action [y from Zy = [ d¢ e Sl¢l—3tréRno

Wetterich-equation adapted for discrete case:

NONTy = Ltr (T3 + Ry) " NowRw

theory space: 'y = ; & tro? + Z,J; i+jeven gé’jtﬂbi trey + ...

assignment of canonical dimensionality: g; = giN~(i=2)/2



SU(N) symmetry breaking and tadpole approximation
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SU(N) symmetry breaking and tadpole approximation

RG approach: cutoff at N = symmetry-breaking

cutoff function: Ry(a, b) = (fTNb — ) 0 (1 — 22) = completely broken
symmetry = ¢.pf(a, b)pp, etc are generated

approximation: restrict to tadpole diagrams

v SU(N) symmetry unbroken
v’ computational simplicity (important at multi-trace level)

consistent approximation if fixed-point couplings small
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Results: Double-scaling limit

search for: fixed point at g4 < 0 with #; = 0.8 and 6, <0 (n > 2)
for RP—2 = x

n=—0¢InZ =2g4x

Be = (1 — 1) + 1) Ban — 20X oy 1) (. T Kotonsi 2002 2058
admits fixed point at g» = — 2= and gop—o (n > 2) (nonuniversal)
01 =1,0,<0,n>2 (universal)

Double-scaling limit recovered with Functional RG (multi-trace truncation
confirms result)
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Multicritical points

Experimental fact: Universe contains gravity & matter

@ matter and gravitational d.o.f.
exist fundamentally

or

@ both “emerge” from discrete
pregeometric building blocks

Here: matter <> collective excitations of matrix model
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Multicritical points
fixed point V[¢] = Str¢? + gatr¢® with g4 < 0 — 2d gravity

fixed points V[¢] = tr¢? + gatrd* + getre® + ... with g4 < 0,86 > 0....

g,<0 pure-gravity case
8,<0 g0 multicritical case
g,<0 g:>0 gs<0

some geometric d.o.f. contribute with negative weight = extra d.o.f.?

— tower of multicritical points <+ 2d gravity 4+ conformal matter [<azakov,
1989, Staudacher, 1990]

— gravity critical exponent: 75 =3/2—m [0 =2/(m+1/2)]

for m = 2 (pure gravity), m > 2 (gravity + conformal matter)



Results: Multicritical points
analytic results for fixed points: (A€, T Koslowski, 2014]
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analytic results for fixed points: (A€, T. Koslowski, 2014]
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Results: Multicritical points
analytic results for fixed points: (A€, T. Koslowski, 2014]

& & &8 810 g12 gu | 61 0 03 04 65 06
0 0 0 0 0 0 -1 -2 -3 -4 -5 -6
—1 1 E 5

= 0 0 0 0 0 1 i -1 3 -2 -2
=T T T 2

= s 0 0 0 0 1 -1 -2 -1 —4
=3 3 I T

B w3 0 0 0 1 2 e

=2 3 —1 1 0 0 1 2 _1 _
Bx 502 2503 104 5

= 3 i 5 R — 0 1 i -

12x 72x2 864x3 20736x4 248832x5 3

=3 _15 __5 15 _ 3 1 1 [ 3 2
7x 196x2 686x3 38416x% 268912x5 7529537x0 7 7

GauBian fixed point

pure gravity fixed point

multicritical points

exact result: 6 =2/(m+1/2), here: 6 =2/m

Multicritical points recovered with Functional RG
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Quantum spacetime is ...

... a causal set

... a spinfoam
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.a causal set ... a2 QFT described by an
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Quantum spacetime is ...

... a causal set

... honcommutative
[x,%,] ~ 6

... 4 QFT described by an
RG fixed point
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Quantum spacetime is ...

... a causal set

.. noncommutative

[x,%,] ~ 6

... described by an RG
fixed point
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.. a QFT described by an
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Quantum spacetime is ...

... a causal set ...stringy and braney

... the continuum limit of
Causal Dynamical Triangulations

.. a QFT described by an
RG fixed point
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Quantum spacetime is ...

... a causal set ...stringy and braney

... the continuum limit of
Causal Dynamical Triangulations

descrlbed by a perturbatively
renormallzable theory with
Lorentz-invariance violation
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Quantum spacetime is ...

... a causal set ...stringy and braney

... the continuum limit of
Causal Dynamical Triangulations

¥ ... the continuum limit of a
‘matrix/ tensor model

. ... a QFT described by an
... a spinfoam ) i
RG fixed point
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Quantum spacetime is ...

... the continuum limit of a
matrix/ tensor model

...stringy and braney

... a causal set

... the continuum limit of
Causal Dynamical Triangulations

... a QFT described by an
RG fixed point
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Which way to quantum gravity?
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Are any of the quantum gravity models related?
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Discrete approaches: Asymptotic safety:
pregeometric phase geometric phase: (g,) exists
phase transition interacting fixed point
to continuum spacetime in the ultraviolet
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Two sides of the same picture?

Discrete approaches: Asymptotic safety:
pregeometric phase geometric phase: (g,) exists
phase transition interacting fixed point
to continuum spacetime in the ultraviolet
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matrix model:
configurations scale with

)L
NF-E+V T
= NX <—N—>

|

I [




Double-scaling limit and continuum beta function
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Double-scaling limit and continuum beta function

matrix model: spacetime description:
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Double-scaling limit and continuum beta function

Be = —10G?
d=2+¢
[Christensen, Duff, 1978; Gastmanns et al., 1978; Weinberg,
1979]
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interacting fixed point (asymptotic safety) <> double-scaling limit



Summary

Matrix/tensor models for quantum gravity:
Sum over spacetimes <> Matrix/tensor path
integral

Continuum limit:
double scaling limit «+» RG fixed point




Summary

Matrix/tensor models for quantum gravity:
Sum over spacetimes <> Matrix/tensor
integral

Continuum limit:
double scaling limit «+» RG fixed point

new FRG tools: double-scaling limit (pure gravity and with matter) in
matrix models

connection between double-scaling limit and d = 2 4 € continuum beta
function showing asymptotic safety



Outlook:
Towards d = 4, quantitative precision, and new
connections

@ towards quantitative precision: control symmetry-breaking sector

@ towards d = 4: similar strategy as in d = 2, larger theory space
Ongoing Work in d = 3 tensor models [Ben Geloun, Benedetti, Oriti]

@ relation to continuum approaches/ asymptotic safety: compare
critical exponents in d = 4
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Thank you for your attention!



