Daniel Becker

ERG2014, Greece

Sep. 22, 2014

D. B., Martin Reuter arXiv:1404.4537

Outline

Asymptotic Safety & Background Independence

2 Bi-Metric Einstein-Hilbert Truncation: Results Asymptotic Safety & Background Independence The running UV-attractor Test of split-symmetry

3 Conclusion

Asymptotic Safety (UV)

Non-perturbative renormalizability : \Leftrightarrow

• Existence of a (non-trivial) UV-fixed point of FRGE

for different fields, gauge groups, constraints, and topologies \checkmark

- . . . with finite dimensional critical hypersurface \mathscr{S}_{UV}

Tests: f(R)-truncations \checkmark

Background Independence

In quantum gravity spacetime is dynamical \Rightarrow Background Independence

In practice two different approaches:

Background Independence

In quantum gravity spacetime is dynamical \Rightarrow Background Independence

In practice two different approaches:

() No background at all \Rightarrow CDT, LQG, ...

Construct spacetime out of 'Nothing'

Background Independence

In quantum gravity spacetime is dynamical \Rightarrow Background Independence

In practice two different approaches:

() No background at all \Rightarrow CDT, LQG, ...

Construct spacetime out of 'Nothing'

$\ensuremath{ 2 \ } \ensuremath{ \mathsf{Generic}} \ensuremath{ \mathsf{background}} \Rightarrow \mathsf{EAA}$

Choose arbitrary background $\bar{g}_{\mu\nu}$ on which dynamical field $g_{\mu\nu}$ propagate

Physical sector of $\Gamma_{k=0} \equiv \Gamma$ should be independent of $\bar{g}!$

Background Independence

In quantum gravity spacetime is dynamical \Rightarrow Background Independence

In practice two different approaches:

() No background at all \Rightarrow CDT, LQG, ...

Construct spacetime out of 'Nothing'

 $\ensuremath{ 2 \ } \ensuremath{ \mathsf{Generic}} \ensuremath{ \mathsf{background}} \Rightarrow \mathsf{EAA}$

Choose arbitrary background $\bar{g}_{\mu\nu}$ on which dynamical field $g_{\mu\nu}$ propagate

Physical sector of $\Gamma_{k=0} \equiv \Gamma$ should be independent of $\bar{g}!$

 \Rightarrow Split-symmetry condition: $\Gamma_{k=0}^{grav}[g, \bar{g} + \delta \bar{g}] = \Gamma_{k=0}^{grav}[g, \bar{g}]$

A Global Requirement

Requirements on the FRGE flow for quantum gravity:

- In the UV: Asymptotic Safety (NGFP, $\dim \mathscr{S}_{UV} < \infty$)
- In the IR: Restoration of split-symmetry $\Gamma_{k=0}$

A Global Requirement

Requirements on the FRGE flow for quantum gravity:

- In the UV: Asymptotic Safety (NGFP, $\dim \mathscr{S}_{UV} < \infty$)
- In the IR: Restoration of split-symmetry $\Gamma_{k=0}$

Question:

Existence of RG trajectories satisfying both conditions (global issue!)

Introduction

Asymptotic Safety & Background Independence

Bi-Metric Einstein-Hilbert Truncation

A Bi-Metric Einstein-Hilbert Truncation

A Bi-Metric Einstein-Hilbert Truncation

Its single-metric approximation:

$$\Gamma^{\rm grav}_k[g,\bar{g}] = -\frac{1}{16\pi G^{\rm sm}_k} \int \sqrt{g} \ (R - 2\Lambda^{\rm sm}_k) \equiv \Gamma^{\rm grav}_k[g]$$

A Bi-Metric Einstein-Hilbert Truncation

$$\Gamma_k^{\rm grav}[g,\bar{g}] = -\frac{1}{16\pi \, G^{\rm B}{}_k} \int \sqrt{\bar{g}} \, \left(\bar{R} - 2\Lambda^{\rm B}{}_k\right) - \frac{1}{16\pi \, G^{\rm Dyn}{}_k} \int \sqrt{g} \, \left(R - 2\Lambda^{\rm Dyn}{}_k\right) \, dk$$

Its single-metric approximation:

$$\Gamma^{\rm grav}_k[g,\bar{g}] = -\frac{1}{16\pi G^{\rm sm}_k} \int \sqrt{g} \ (R - 2\Lambda^{\rm sm}_k) \equiv \Gamma^{\rm grav}_k[g]$$

Split-symmetry $\Gamma_k^{\text{grav}}[g, \bar{g}] \stackrel{!}{=} \Gamma_k^{\text{grav}}[g, \bar{g} + \delta \bar{g}]$ $\Rightarrow \quad \frac{1}{G_k^{\text{B}}} \stackrel{!}{=} 0, \qquad \frac{\Lambda_k^{\text{B}}}{G_k^{\text{B}}} \stackrel{!}{=} 0$

A Bi-Metric Einstein-Hilbert Truncation

$$\Gamma_k^{\rm grav}[g,\bar{g}] = -\frac{1}{16\pi \, G^{\rm B}{}_k} \int \sqrt{\bar{g}} \, \left(\bar{R} - 2\Lambda^{\rm B}{}_k\right) - \frac{1}{16\pi \, G^{\rm Dyn}{}_k} \int \sqrt{g} \, \left(R - 2\Lambda^{\rm Dyn}{}_k\right) \, dk$$

Its single-metric approximation:

$$\Gamma^{\rm grav}_k[g,\bar{g}] = -\frac{1}{16\pi G^{\rm sm}_k} \int \sqrt{g} \ (R - 2\Lambda^{\rm sm}_k) \equiv \Gamma^{\rm grav}_k[g]$$

Split-symmetry $\Gamma_k^{\text{grav}}[g, \bar{g}] \stackrel{!}{=} \Gamma_k^{\text{grav}}[g, \bar{g} + \delta \bar{g}]$ $\Rightarrow \qquad \frac{1}{G_k^{\text{B}}} \stackrel{!}{=} 0, \qquad \frac{\Lambda_k^{\text{B}}}{G_k^{\text{B}}} \stackrel{!}{=} 0$

Background Independence: $k \rightarrow 0$

A Bi-Metric Einstein-Hilbert Truncation

$$\Gamma_k^{\rm grav}[g,\bar{g}] = -\frac{1}{16\pi \, G^{\rm B}{}_k} \int \sqrt{\bar{g}} \, \left(\bar{R} - 2\Lambda^{\rm B}{}_k\right) - \frac{1}{16\pi \, G^{\rm Dyn}{}_k} \int \sqrt{g} \, \left(R - 2\Lambda^{\rm Dyn}{}_k\right) \, dk$$

Its single-metric approximation:

$$\Gamma^{\rm grav}_k[g,\bar{g}] = -\frac{1}{16\pi G^{\rm sm}_k} \int \sqrt{g} \ (R - 2\Lambda^{\rm sm}_k) \equiv \Gamma^{\rm grav}_k[g]$$

Split-symmetry $\Gamma_k^{\text{grav}}[g, \bar{g}] \stackrel{!}{=} \Gamma_k^{\text{grav}}[g, \bar{g} + \delta \bar{g}]$

=

$$\Rightarrow \qquad \frac{1}{G_k^{\mathsf{B}}} \stackrel{!}{=} 0 , \qquad \frac{\Lambda_k^{\mathsf{B}}}{G_k^{\mathsf{B}}} \stackrel{!}{=} 0$$

Background Independence: $k \rightarrow 0$ Single-metric reliability: $\forall k \in [0, \infty)$

Structure of the Beta-Functions

$$\begin{aligned} \partial_t g_k^{\mathsf{Dyn}} &= \beta_g^{\mathsf{Dyn}}(g_k^{\mathsf{Dyn}}, \lambda_k^{\mathsf{Dyn}}), \qquad \partial_t \lambda_k^{\mathsf{Dyn}} = \beta_\lambda^{\mathsf{Dyn}}(g_k^{\mathsf{Dyn}}, \lambda_k^{\mathsf{Dyn}}) \\ & \downarrow \\ \partial_t g_k^{\mathsf{B}} &= \beta_g^{\mathsf{B}}(g_k^{\mathsf{Dyn}}, \lambda_k^{\mathsf{Dyn}}, g_k^{\mathsf{B}}) \\ & \downarrow \\ \partial_t \lambda_k^{\mathsf{B}} &= \beta_\lambda^{\mathsf{B}}(g_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}}, g_k^{\mathsf{B}}, \lambda_k^{\mathsf{B}}) \end{aligned}$$

g^{Dyn}

Asymptotic Safety & Background Independence

Structure of the Beta-Functions

For fixed
$$k \mapsto \left(g_k^{\text{Dyn}}, \lambda_k^{\text{Dyn}}\right)$$

 $\downarrow \downarrow$
 $\partial_t g_k^{\text{B}} = \beta_g^{\text{B}}(g_k^{\text{Dyn}}, \lambda_k^{\text{Dyn}}, g_k^{\text{B}})$
 $\downarrow \downarrow$
 $\partial_t \lambda_k^{\text{B}} = \beta_\lambda^{\text{B}}(g_k^{\text{Dyn}}, \Lambda_k^{\text{Dyn}}, g_k^{\text{B}}, \lambda_k^{\text{B}})$

-0.1

 λ^{Dyn}

Structure of the Beta-Functions

For fixed
$$k \mapsto \left(g_k^{\mathsf{Dyn}}, \lambda_k^{\mathsf{Dyn}}\right)$$

 \downarrow
 $\partial_t g_k^{\mathsf{B}} = \beta_g^{\mathsf{B}}(g_k^{\mathsf{B}}; k)$
 \downarrow
 $\partial_t \lambda_k^{\mathsf{B}} = \beta_\lambda^{\mathsf{B}}(g_k^{\mathsf{B}}, \lambda_k^{\mathsf{B}}; k)$

Fixed points: $\beta_g^{\mathsf{B}}(g_{\bullet}^{\mathsf{B}}(k); \mathbf{k}) = 0 = \beta_{\lambda}^{\mathsf{B}}(g_{\bullet}^{\mathsf{B}}(k), \lambda_{\bullet}^{\mathsf{B}}(k); \mathbf{k})$

Fixed points: $\beta_g^{\mathsf{B}}(g_{\bullet}^{\mathsf{B}}(k); \mathbf{k}) = 0 = \beta_{\lambda}^{\mathsf{B}}(g_{\bullet}^{\mathsf{B}}(k), \lambda_{\bullet}^{\mathsf{B}}(k); \mathbf{k})$

 $\Rightarrow (g^{\mathsf{B}}_{\bullet}(\mathbf{k}), \lambda^{\mathsf{B}}_{\bullet}(\mathbf{k}))$ defines **running UV-attractor** in B-sector

Asymptotic Safety Condition UV

Non-trivial UV-fixed point

Dynamical sector:

 $(g_*^{\rm Dyn},\,\lambda_*^{\rm Dyn})=(0.7,0.2)$

 $\lim_{k\to\infty} \left(g^{\mathsf{B}}_{\bullet}(\mathbf{k}), \lambda^{\mathsf{B}}_{\bullet}(\mathbf{k})\right) \text{ exists?}$

Asymptotic Safety Condition UV

Non-trivial UV-fixed point

Dynamical sector:

 $(g^{\mathsf{Dyn}}_*,\,\lambda^{\mathsf{Dyn}}_*)=(0.7,0.2)$

 $\lim_{k\to\infty} \left(g^{\mathsf{B}}_{\bullet}(\mathbf{k}), \lambda^{\mathsf{B}}_{\bullet}(\mathbf{k}) \right)$ exists:

$$(g^{\sf B}_*,\,\lambda^{\sf B}_*)=(8.2,-0.01)$$

Asymptotic Safety Condition UV

Non-trivial UV-fixed point

Dynamical sector:

 $(g^{\mathsf{Dyn}}_*,\,\lambda^{\mathsf{Dyn}}_*)=(0.7,0.2)$

 $\lim_{k\to\infty} \left(g^{\mathsf{B}}_{\bullet}(\mathbf{k}), \lambda^{\mathsf{B}}_{\bullet}(\mathbf{k}) \right)$ exists:

$$(g_*^{\mathsf{B}}, \lambda_*^{\mathsf{B}}) = (8.2, -0.01)$$

$$\left\{\underbrace{\left(G_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}}, G_k^{\mathsf{B}}, \Lambda_k^{\mathsf{B}}\right)}_{\in \mathcal{T}_{\mathsf{trunc}}: \ \mathsf{4-dim}.} \mid \underbrace{\left(G_k^{\mathsf{Dyn}/\mathsf{B}} > 0\right)}_{\mathsf{Asym. Safety: \ \mathsf{4-dim}.}}\right\}$$

arXiv:1404.4537 Asymptotic Safety & Background Independence

Split-Symmetry in the IR

For every $k \mapsto (G_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}})$:

$$1/G_{\rm B.I.}^{\rm B}(k=0)=0$$

Split-Symmetry in the IR

For every $k \mapsto (G_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}})$: one, and only one, full RG trajectory with

$$1/G_{\rm B.I.}^{\rm B}(k=0)=0$$

Split-Symmetry in the IR

For every $k\mapsto (G_k^{\mathsf{Dyn}},\Lambda_k^{\mathsf{Dyn}})$: one, and only one, full RG trajectory with

$$1/G_{\mathrm{B.I.}}^{\mathrm{B}}(k=0) = \lim_{k \to 0} 1/G_{\bullet}^{\mathrm{B}}(G_{k}^{\mathrm{Dyn}}, \Lambda_{k}^{\mathrm{Dyn}}; k) = 0$$

Split-Symmetry in the IR

For every $k \mapsto (G_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}})$: one, and only one, full RG trajectory with

$$1/G_{\mathsf{B},\mathsf{I}}^{\mathsf{B}}(k=0) = \lim_{k \to 0} 1/G_{\bullet}^{\mathsf{B}}(G_{k}^{\mathsf{Dyn}}, \Lambda_{k}^{\mathsf{Dyn}}; k) = 0$$

$$\left\{ \underbrace{\left(G_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}}, G_k^{\mathsf{B}}, \Lambda_k^{\mathsf{B}}\right)}_{\left(G_k^{\mathsf{Dyn}/\mathsf{B}} > 0\right)} , \underbrace{\left(G_k^{\mathsf{B}} = G_{\mathsf{B},\mathsf{L}}^{\mathsf{B}}(k) \land \Lambda_k^{\mathsf{B}} = \Lambda_{\mathsf{B},\mathsf{L}}^{\mathsf{B}}(k)\right)}_{\left(G_k^{\mathsf{B}} = G_{\mathsf{B},\mathsf{L}}^{\mathsf{B}}(k) \land \Lambda_k^{\mathsf{B}} = \Lambda_{\mathsf{B},\mathsf{L}}^{\mathsf{B}}(k)\right) \right\}$$

 $\in \! \mathcal{T}_{trunc}: \text{ 4-dim}.$

Asym. Safety: 4-dim.

Back. Ind.: 2-dim

Split-Symmetry in the IR

For every $k \mapsto (G_k^{\mathsf{Dyn}}, \Lambda_k^{\mathsf{Dyn}})$: one, and only one, full RG trajectory with

$$1/G_{\mathsf{B}.\mathsf{I.}}^{\mathsf{B}}(k=0) = \lim_{k \to 0} 1/G_{\bullet}^{\mathsf{B}}(G_{k}^{\mathsf{Dyn}}, \Lambda_{k}^{\mathsf{Dyn}}; k) = 0$$

⇒ Asymptotic Safety and Background Independence simultaneously fulfilled! (only 2 free parameters left) The running UV-attractor

The running UV-attractor

The dual role of the running UV-attractor:

- guarantees non-perturbative renormalizability for $k \to \infty$
- guarantees Background Independence for k
 ightarrow 0

Test of split-symmetry

Test of (intermediate) split-symmetry

arXiv:1404.4537 Asymptotic Safety & Background Independence

Asymptotic Safety & Background Independence

• A global requirement that needs bi-metric truncations B.I. $\stackrel{\text{IR}}{\leftarrow}$ running UV-attractor $\stackrel{\text{UV}}{\longrightarrow}$ A.S.

(Number of free parameter reduces from 4 to 2)

Asymptotic Safety & Background Independence

• A global requirement that needs bi-metric truncations B.I. $\stackrel{\text{IR}}{\leftarrow}$ running UV-attractor $\stackrel{\text{UV}}{\longrightarrow}$ A.S.

(Number of free parameter reduces from 4 to 2)

Split-symmetry

• IR: intact by construction

Asymptotic Safety & Background Independence

• A global requirement that needs bi-metric truncations B.I. $\stackrel{\text{IR}}{\leftarrow}$ running UV-attractor $\stackrel{\text{UV}}{\longrightarrow}$ A.S.

(Number of free parameter reduces from 4 to 2)

Split-symmetry

- IR: intact by construction
- Split-symmetry i.g. broken for $0 < k < \infty$ [arXiv:1407.5848]

Asymptotic Safety & Background Independence

• A global requirement that needs bi-metric truncations B.I. $\stackrel{\text{IR}}{\leftarrow}$ running UV-attractor $\stackrel{\text{UV}}{\longrightarrow}$ A.S.

(Number of free parameter reduces from 4 to 2)

Split-symmetry

- IR: intact by construction
- Split-symmetry i.g. broken for $0 < k < \infty$ [arXiv:1407.5848]
- UV: approximately intact near the NGFP

Asymptotic Safety & Background Independence

• A global requirement that needs bi-metric truncations B.I. $\stackrel{\text{IR}}{\leftarrow}$ running UV-attractor $\stackrel{\text{UV}}{\longrightarrow}$ A.S.

(Number of free parameter reduces from 4 to 2)

Split-symmetry

- IR: intact by construction
- Split-symmetry i.g. broken for $0 < k < \infty$ [arXiv:1407.5848]
- UV: approximately intact near the NGFP
- $\Rightarrow\,$ Single-metric approximation reliable only in UV and IR

Asymptotic Safety & Background Independence

• A global requirement that needs bi-metric truncations B.I. $\stackrel{\text{IR}}{\leftarrow}$ running UV-attractor $\stackrel{\text{UV}}{\longrightarrow}$ A.S.

(Number of free parameter reduces from 4 to 2)

Split-symmetry

- IR: intact by construction
- Split-symmetry i.g. broken for $0 < k < \infty$ [arXiv:1407.5848]
- UV: approximately intact near the NGFP
- \Rightarrow Single-metric approximation reliable only in UV and IR

Conclusion

- Background Independence and A. S. can coexist
- Generalize truncations to bi-metric ones (single-metric check)

Thank You!