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What is the physics of asymptotically safe 
gravity?

• Classical gravity: GR. 

• Physical degrees of freedom: gravitational waves i.e. graviton. 

• Conformal degree of freedom constrained. 

• Conformal factor fixed by cosmological constant. 

• What changes in the quantum theory?  

• What is the physical meaning of running couplings e.g.             . 

• How are they related to physical degrees of freedom. 

• FRG approach to quantum gravity:
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What is the physics of asymptotically safe gravity?

• Approach (see : (arXiv:1408.0276), KF) 
 - Decompose metric into physical degrees of freedom. 

 - Cancel gauge variant and ghosts (Benedetti arXiv:1107.3110) 

 - Cancellation of conformal fluctuations with functional measure 

 - Take care to ensure convexity of the effective average action. 

 -Approximation scheme based on heat kernel expansion. 

• Some Physics: Critical behaviour in quantum gravity 
 - What are the physical fields and couplings.  
 - Asymptotic safety vs phase transitions. 
 -Continuum vs discrete spacetime.
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Scaling in quantum gravity

• Einstein Hilbert action: 

!
• Can scale out Newtons constant  
• Spoilt by linear decomposition  
!

• Decompose into conformal factor: 
!

• Dressed conformal factor:
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Scaling in quantum gravity

• Decompose into conformal factor: 
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Cosmological constant 
• Dynamics of volume. 
• Dimensionless product: 
!
!

    - measurable quantity                    . 
   - Cosmological constant problem. 
!
•            interaction for the dressed 

conformal mode.    
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Conformal fluctuations
• Conformal factor is non-dynamical in general relativity 
• Quantum theory: W rong sign in kinetic term 
• Mottola and Mazur (1990): Dynamics of conformal factor 

cancelled on-shell by Jacobian in the functional 
measure 

• Fluctuations Wick rotated: 
!
!

where 
• Cancellation of the conformal factor can be realised at the 

level of the flow equation after suitable field redefinitions.
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Convexity
• Need to ensure convexity when we make 

approximations 
• In presence of a regulator 
• Consider: 
!
!

• Convex for  
• Expansion around            leads to poles (avoided 

by IR fixed points)

!8

S(2)
! = 16⇡GS(2)

� = �0 + 2

✓
R

4
� ⇤

◆
�(2)
k +Rk > 0

R > 4⇤
R = 0



RG scheme
• Want to keep on-shell cancellations and avoid poles 

arising at non-convex part of the action 
• Regulator 

!
!

• Regulator vanishes for k=0 provided  

!
• UV behaviour captured by early heat kernel expansion 
!

!
• Truncate expansion no further curvature expansion, 

closes Einstein-Hilbert approximation.
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Linear decomposition
• Linear approximation to conformal mode 
• Only quantise (linear) conformal modes with non-trivial Jacobian. 

• RG flow contains phase with vanishing CC for all scales: 

!
!
!
!
!
!
!
!

• Critical exponent (obtained with Litim’s regulator)               
in agreement with lattice studies by Hamber                  .
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Linear decomposition
• Linear approximation to conformal mode 

!
• Quantise all metric degrees of freedom. 
• RG flow UV FP —> line of classical IR fixed points:
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Conformal factor decomposition
• Flow of Newton’s constant becomes independent of the 

cosmological constant in full theory. 

!
• Positive Newton’s constant UV fixed point. 

• Simple beta function  

!
!
!

• Explicit results using Litim’s optimised cutoff. 

• Universal critical exponent agrees with numerical results of Hamber 
(hep-th/9912246) from lattice theory (Regge calculus).
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Conformal factor decomposition
• Flow of Newton’s constant becomes independent of the 

cosmological constant in full theory. 
• Positive Newton’s constant UV fixed point.
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Dressed metric
• We have regulated the conformal factor of the 

dressed metric 

!
!

• Interpretation:  
 - averaged fluctuations of        with   
 respect to length scales on       . 
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A smallest length
!
!
!

• Critical fine grained limit limit: 
  
  
!
!
• RG improvement implies a smallest observable 

length! (similar observation: arXiv:1008.3621, R. Percacci, G. P. Vacca)   
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Phase transitions (see talk  A. Eichhorn)

• Consider de-Sitter space 

• Hubble’s constant is the only scale 

!
!

• Gibbons-Hawking temperature associated to the horizon: 

!
!

• Phase transition on the re-scaled metric. 

!
!

• Hagedorn temperature for quantum gravity? 

• Metric description may break down in high temperature 
phase. Melting point of spacetime. !16
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Conclusions
• Disentangling degrees of freedom disentangles the 

RG flow of couplings 
• Conformally reduced theory consistent with a 

zero cosmological constant. 
• Full theory implies that the CC is a free 

parameter. 
• Critical exponent found in agreement with 

quantum Regge calculus. 
• UV FP —> Phase transition for spacetime. 
• Discrete —> continuous. 
• Universality in quantum gravity?
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