

FRG-QCD: Status and Prospects

Jan M. Pawlowski

Universität Heidelberg & ExtreMe Matter Institute

Lefkada, September 23rd 2014

FRG-QCD Talks

- L. Fister 'Correlation functions in Yang-Mills theory' cancelled by Air France
- M. Mitter 'QCD and dynamical hadronisation'
- N. Strodthoff <u>Spectral functions</u>
- F. Rennecke '<u>The chiral phase transition of QCD</u>'

FRG-QCD collaboration: J. Braun, L. Fister, T.K. Herbst, M. Mitter, JMP, F. Rennecke, N. Strodthoff

TARDIS, ERGE

DoFun

Braun, Huber, Comput. Phys. Commun. 183 (2012) 1290-1320

FRG-QCD Talks

- L. Fister 'Correlation functions in Yang-Mills theory' cancelled by Air France
- M. Mitter 'QCD and dynamical hadronisation'
- N. Strodthoff <u>Spectral functions</u>'
- F. Rennecke '<u>The chiral phase transition of QCD</u>'

FRG-QCD collaboration: J. Braun, L. Fister, T.K. Herbst, M. Mitter, JMP, F. Rennecke, N. Strodthoff

Related Talks

- M. Huber 'Yang-Mills correlation functions from Dyson-Schwinger equations'
- A. Juricic 'Probing the QCD phase diagram with generalised quark susceptibilities'
- K. Kamikado <u>'Magnetic susceptibility of the strongly interacting matter</u>'
- N. Khan 'The role of fluctuations in the QCD phase diagram'
- J. Luecker 'Polyakov loop potential from functional methods'
- S. Mao '<u>The Deconfinement phase transition in the Friedberg-Lee model</u>'
- N. Mueller <u>'QCD in magnetic fields'</u>
- S. Rechenberger 'Chiral dynamics in external magnetic fields'
- B.J. Schaefer <u>`Phase structure, thermodynamics and fluctuations in QCD</u>'
- P. Springer 'Dynamical locking of chiral and deconfinement phase transitions'
- W. Weise <u>'Chiral nuclear thermodynamics'</u>
- M. Yamada 'Beyond LPA for dynamical chiral symmetry breaking'

Outline

Functional Methods for QCD

Confinement & Chiral Symmetry Breaking

Phase Structure and Transport

Outlook

quark-gluon correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n})A_{\mu}(y_1)\cdots A_{\mu}(y_m)\rangle$

functional relations

scattering amplitude/ vertex functions

quark-gluon-hadron correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$

functional relations

scattering amplitude/ vertex functions

Functional renormalisation group equations

Dyson-Schwinger equations

2PI/nPI hierarchies

quark-gluon-hadron correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$

functional relations

scattering amplitude/ vertex functions

properties

• access to physics mechanisms

- numerically tractable no sign problem systematic error control via closed form
- Iow energy models naturally encorporated

quark-gluon-hadron correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$

functional relations

scattering amplitude/ vertex functions

properties

• access to physics mechanisms

- numerically tractable no sign problem systematic error control via closed form
- Iow energy models naturally encorporated

quark-gluon-hadron correlations

 $\langle q(x_1)\cdots \bar{q}(x_{2n}) A_{\mu}(y_1)\cdots A_{\mu}(y_m) h(z_1)\cdots h(z_l) \rangle$

functional relations

scattering amplitude/ vertex functions

e.g. volume flucs., finite density, dynamics, ...

properties

• access to physics mechanisms

- numerically tractable no sign problem systematic error control via closed form
- Iow energy models naturally encorporated

Scales

• intrinsic scale of QCD:

 $\Lambda_{\rm QCD}\approx 200\,{\rm MeV}$

Scales

• intrinsic scale of QCD:

• glue mass gap

 $\Lambda_{\rm QCD}\approx 200\,{\rm MeV}$

 $\Delta m_{\rm glue}\approx\Lambda_{\rm QCD}$

Scales

• intrinsic scale of QCD:

 $\Lambda_{\rm QCD}\approx 200\,{\rm MeV}$

• glue mass gap (Landau gauge: mass gap of glue propagator)

 $\Delta \mathrm{m}_\mathrm{glue} pprox \Lambda_\mathrm{QCD}$

Scales

• intrinsic scale of QCD:

 $\Lambda_{\rm QCD}\approx 200\,{\rm MeV}$

- glue mass gap (Landau gauge: mass gap of glue propagator) $\Delta m_{
 m glue} pprox \Lambda_{
 m QCD}$
- chiral symmetry breaking scale: $\Delta m_\chi pprox m_{f q, {
 m constit.}} m_{f q, {
 m current}}$

 $\Delta m_{\chi} \approx 300 \,\mathrm{MeV}$

Scales

• intrinsic scale of QCD:	$\Lambda_{ m QCD}pprox 200{ m MeV}$
 glue mass gap (Landau gauge: mass gap of glue propagator) 	$\Delta { m m}_{ m glue}pprox \Lambda_{ m QCD}$
$ullet$ chiral symmetry breaking scale: $\Delta m_\chi \approx m_{q, {\rm constit.}} - m_{q, {\rm current}}$	$\mathbf{\Delta m}_{\chi} pprox 300\mathrm{MeV}$
• chiral/confinement critical temperatures:	$\mathbf{T}_{\chi} pprox \mathbf{T}_{ ext{conf}} pprox 150 ext{MeV}$

Scales

- intrinsic scale of QCD:
 - glue mass gap (Landau gauge: mass gap of glue propagator)
 - ullet chiral symmetry breaking scale: $\Delta m_\chi pprox m_{f q, {
 m constit.}} m_{f q, {
 m current}}$
 - chiral/confinement critical temperatures:

scales = $\mathbf{c}(\mathbf{N}_{\mathbf{f}}, \mathbf{N}_{\mathbf{c}}) \mathbf{\Lambda}_{\mathrm{QCD}}$

 $\Lambda_{\rm QCD}\approx 200\,{\rm MeV}$

 $\Delta m_{
m glue} pprox \Lambda_{
m QCD}$

 $\Delta m_{\chi} pprox 300 \,\mathrm{MeV}$

 $\mathbf{T}_{\chi} pprox \mathbf{T}_{\mathrm{conf}} pprox \mathbf{150} \, \mathrm{MeV}$

Scales

- intrinsic scale of QCD:
 - glue mass gap (Landau gauge: mass gap of glue propagator)
 - chiral symmetry breaking scale: $\Delta m_\chi pprox m_{f q, {
 m constit.}} m_{f q, {
 m current}}$
 - chiral/confinement critical temperatures:

scales = $\mathbf{c}(\mathbf{N_f}, \mathbf{N_c}) \mathbf{\Lambda}_{QCD}$

- explicit mass scales of QCD:
 - current quark masses: $\left. \left. \frac{m_{q, \mathrm{current}}}{\Lambda_{\mathrm{QCD}}} \right|_{\mathrm{light\ quarks}} pprox 10^{-2} \qquad m_\pi pprox 140\,\mathrm{MeV}$

 $\Lambda_{
m QCD}pprox 200\,{
m MeV}$

 $\Delta m_{
m glue} pprox \Lambda_{
m QCD}$

 $\Delta m_{\chi} pprox 300 \,\mathrm{MeV}$

 $\mathbf{T}_{\chi} pprox \mathbf{T}_{\mathrm{conf}} pprox \mathbf{150}\,\mathrm{MeV}$

Scales

• intrinsic scale of QCD:

- glue mass gap (Landau gauge: mass gap of glue propagator)
- chiral symmetry breaking scale: $\Delta m_\chi pprox m_{f q, {
 m constit.}} m_{f q, {
 m current}}$
- chiral/confinement critical temperatures:

scales = $c(N_f, N_c)\Lambda_{QCD}$

- explicit mass scales of QCD:
 - current quark masses: $\left. \left. \frac{m_{q, \mathrm{current}}}{\Lambda_{\mathrm{QCD}}} \right|_{\mathrm{light quarks}} pprox 10^{-2} \qquad m_\pi pprox 140 \, \mathrm{MeV}$
- higher resonances:

 $\Lambda_{
m QCD}pprox 200\,{
m MeV}$

 $\Delta m_{
m glue} pprox \Lambda_{
m QCD}$

 $\Delta m_{\chi} \approx 300 \,\mathrm{MeV}$

 $\mathbf{T}_{\chi} pprox \mathbf{T}_{\mathrm{conf}} pprox \mathbf{150}\,\mathrm{MeV}$

 $rac{\mathrm{m_{res}}}{\Lambda_{\mathrm{QCD}}} \lesssim 10^{-1}$

Scales

- glue mass gap (Landau gauge: mass gap of glue propagator)
- chiral symmetry breaking scale: $\Delta m_\chi pprox m_{f q, {
 m constit.}} m_{f q, {
 m current}}$
- chiral/confinement critical temperatures:

scales = $\mathbf{c}(\mathbf{N}_{\mathbf{f}}, \mathbf{N}_{\mathbf{c}}) \mathbf{\Lambda}_{\mathrm{QCD}}$

$\Lambda_{ m QCD}pprox 200\,{ m MeV}$

 $\Delta \mathrm{m}_\mathrm{glue} pprox \Lambda_\mathrm{QCD}$

 $\Delta m_\chi pprox 300 \,\mathrm{MeV}$

 $\mathbf{T}_{\chi} pprox \mathbf{T}_{\mathrm{conf}} pprox \mathbf{150} \, \mathrm{MeV}$

Scales

- glue mass gap (Landau gauge: mass gap of glue propagator)
- chiral symmetry breaking scale: $\Delta m_\chi pprox m_{q, constit.} m_{q, current}$
- chiral/confinement critical temperatures:

scales =
$$\mathbf{c}(\mathbf{N_f}, \mathbf{N_c}) \boldsymbol{\Lambda}_{\mathrm{QCD}}$$

• current quark masses:
$$\frac{m_{q,current}}{\Lambda_{QCD}}\Big|_{light quarks} \approx 10^{-2}$$
 $m_{\pi} \approx 140 \,\mathrm{MeV}$
• higher resonances: $\frac{m_{res}}{\Lambda_{QCD}} \lesssim 10^{-1}$
• nucleon binding energy $\approx 16 \,\mathrm{MeV}$
see talk of W. Weise low energy models

 $\Lambda_{
m QCD}pprox 200\,{
m MeV}$

 $\Delta m_{
m glue} pprox \Lambda_{
m QCD}$

 $\Delta m_{\chi} \approx 300 \,\mathrm{MeV}$

 $\mathbf{T}_{\chi} pprox \mathbf{T}_{\mathrm{conf}} pprox \mathbf{150}\,\mathrm{MeV}$

Scales

- glue mass gap (Landau gauge: mass gap of glue propagator)
- chiral symmetry breaking scale: $\Delta m_\chi pprox m_{{f q},{
 m constit.}} m_{{f q},{
 m current}}$
- chiral/confinement critical temperatures:

scales =
$$\mathbf{c}(\mathbf{N_f}, \mathbf{N_c}) \boldsymbol{\Lambda}_{\mathrm{QCD}}$$

• current quark masses: $\frac{m_{q,current}}{\Lambda_{QCD}}\Big|_{light quarks} \approx 10^{-2}$ $m_{\pi} \approx 140 \,\mathrm{MeV}$ • higher resonances: $\frac{m_{res}}{\Lambda_{QCD}} \lesssim 10^{-1}$ • nucleon binding energy $\approx 16 \,\mathrm{MeV}$ best done with a combination of imaginary and real time flows

 $\Lambda_{
m QCD}pprox 200\,{
m MeV}$

 $\Delta \mathrm{m}_\mathrm{glue} pprox \Lambda_\mathrm{QCD}$

 $\Delta m_{\chi} \approx 300 \,\mathrm{MeV}$

 $\mathbf{T}_{\chi} pprox \mathbf{T}_{\mathrm{conf}} pprox \mathbf{150}\,\mathrm{MeV}$

Functional RG

JMP, AIP Conf.Proc. 1343 (2011)

Functional RG

JMP, AIP Conf.Proc. 1343 (2011)

Yang-Mills theory

Confinement

 FRG: Braun, Gies, JMP, PLB 684 (2010) 262

 FRG, DSE, 2PI:
 Fister, JMP, PRD 88 (2013) 045010

 $T_c/\sqrt{\sigma} = 0.658 \pm 0.023$

lattice : $T_c/\sqrt{\sigma} = 0.646$

see talk of L. Fister

- gauge independence
- confinement criteria

Fister, JMP, arXiv:1112.5440

Confinement

FRG: Braun, Gies, JMP, PLB 684 (2010) 262 FRG, DSE, 2PI: Fister, JMP, PRD 88 (2013) 045010

 $T_c / \sqrt{\sigma} = 0.658 \pm 0.023$

lattice : $T_c/\sqrt{\sigma} = 0.646$

see talk of L. Fister

Fister, JMP, arXiv:1112.5440

Braun, Gies, JMP '07 Marhauser, JMP '08 Fister, JMP '13

Confinement

present best approximation

see talk of M. Mitter

FRG-QCD: Braun, Fister, Herbst, Mitter, JMP, Rennecke, Strodthoff

chiral symmetry breaking

see talk of M. Mitter

FRG-quenched QCD vs lattice-quenced QCD

Mitter, JMP, Strodthoff, in preparation

chiral symmetry breaking

FRG-quenched QCD vs lattice-quenced QCD

chiral symmetry breaking

dynamical locking at finite T: see talk of P. Springer

FRG-quenched QCD vs lattice-quenced QCD

¹²

Haas, Stiele et al, Phys.Rev. D87 (2013) 076004

Phase structure at finite density

Fischer, Fister, Luecker, JMP, PLB732 (2014) 248

Phase structure at finite density

Viscosity in pure glue

see talk of N. Strodthoff

Viscosity in pure glue

transversal gluon spectral function

see talk of N. Strodthoff

$$\eta = \frac{1}{20} \left. \frac{d}{d\omega} \right|_{\omega=0} \rho_{\pi\pi}(\omega, 0)$$

3-loop exact functional relation

M. Haas, Fister, JMP, arXiv:1308.4960 Christiansen, Haas, JMP, Strodthoff, in preparation

Chiral Symmetry Breaking and Confinement

Phase structure and Transport

ρ [Λ⁻²]

Phase structure at **Interaction measure Phase structure at** 300 8 Wuppertal-Budapest, 2010 $\frac{\mu_B}{T} = 3$ μ_B 200 T7 250 $\iota \in \mathbf{i} \mathbf{R}$ HotQCD N_t=12, 2012 m_π=138 MeV 6 PQM FRG 200 150 $\mu \neq \mathbf{0}$ PQM eMF+π 3P)/T⁴ [M] 100 ⊢ T [MeV] 5 PQM MF+π 150 χ cróssover PQM eMF 4 σ(T=0)/2 Т 3 ω 100 Φ crossover $\overline{\Phi}$ crossover 2 50 I conf 50 χ 1st order T_v 1 CEP 0 0 0 0 π/3 $2\pi/3$ 4π/3 100 150 200 250 50 π 0 0.2 0.6 -0.6 -0.4 -0.2 0 0.4 2πθ μ [MeV] t

see talks of L. Fister N. Strodthoff

300 350

see talks of M. Mitter

B.-J. Schaefer

Chiral Symmetry Breaking and Confinement

Phase Structure and Transport

- Towards quantitative precision
- Baryons, high density regime, dynamics
- Hadronic properties
 - hadron spectrum & in medium modifications
 - Iow energy constants

10 biggest lies in mountaineering o) We are almost there.

- •) We won't need crampons.
- o) I can already see the summit.
- 0) Believe me, I know the way.

o) The hardest part is already behind us.

Thank for the nice workshop o

C.G.

• Original application: sign-problem

• General appplication: Evaluate systematic error

C. Gattringer, DELTA13-meeting Heidelberg

10 biggest lies in mountaineering_ o) We are almost there. o) We won't need crampons. o) I can already see the summit. o) Believe me, I know the way. o) The hardest part is already behind us. Thank for the nice workshop o C.G

final word of caution

Original application: sign-problem

• General appplication: Evaluate systematic error

Thanx to Holger, Jan, Manuel, Dietrich

... of course we have seen the summit!

...several of them.....

C. Gattringer, DELTA13-meeting Heidelberg