On IR Fixed Points of Quantum Gravity.

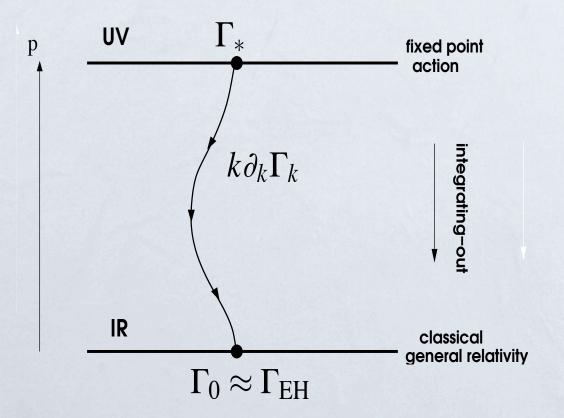
Raul Cuesta, Carlos Contreras.

Department of Physics and Astronomy.

7th International Conference on the Exact Renormalisation Group. 22 Sep. 2014

Renormalisation Group for Gravity.

RG for Gravity.



Wilson's Renormalisation Group.

Explore theories with different energy scales.

$$k\partial_k \Gamma_k = \frac{1}{2} Tr \left(\Gamma^{(2)} + R_k \right)^{-1} k \partial_k R_k,$$

$$\Gamma_k = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right]$$

$$g = G(k)k^2 \qquad \lambda = \Lambda(k)k^{-2} \qquad \text{Anomalous Dimension.}$$

$$\eta = k\partial_k \log G_k$$

$$\Gamma_k = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right]$$

$$g = G(k)k^2$$

$$g = G(k)k^2$$
 $\lambda = \Lambda(k)k^{-2}$

Anomalous Dimension. $\eta = k\partial_k \log G_k$

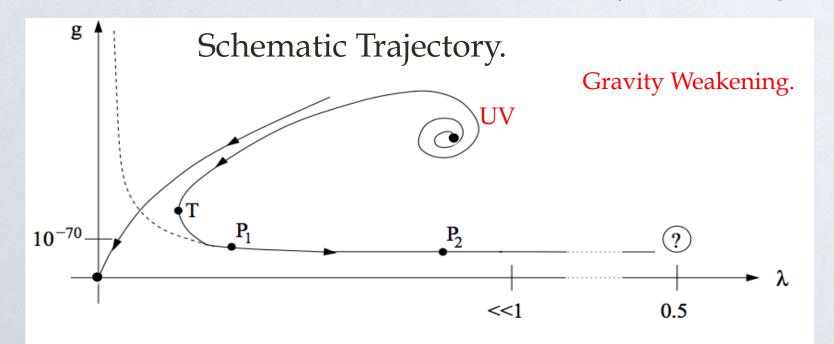


Figure 4: The Type IIIa trajectory realized in Nature and the separatrix. The dashed line is a trajectory of the canonical RG flow.

M. Reuter and H. Weyer, JCAP 0412, 001 (2004)

$$\Gamma_k = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right]$$

$$g = G(k)k^2$$

$$g = G(k)k^2$$
 $\lambda = \Lambda(k)k^{-2}$

Anomalous Dimension. $\eta = k\partial_k \log G_k$

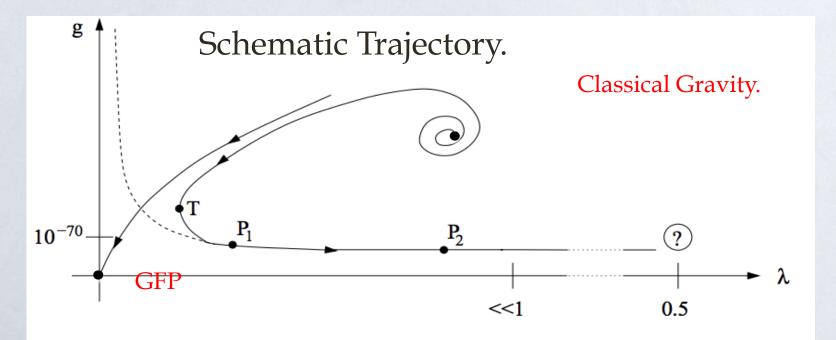


Figure 4: The Type IIIa trajectory realized in Nature and the separatrix. The dashed line is a trajectory of the canonical RG flow.

M. Reuter and H. Weyer, JCAP 0412, 001 (2004)

$$\Gamma_k = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} (-R + 2\Lambda_k) \right]$$

$$g = G(k)k^2 \qquad \lambda = \Lambda(k)k^{-2} \qquad \text{Anomalous Dimension.}$$

$$\eta = k\partial_k \log G_k$$

Schematic Trajectory. 10^{-70} <<1 0.5

 $\eta = k\partial_k \log G_k$

Figure 4: The Type IIIa trajectory realized in Nature and the separatrix. The dashed line is a trajectory of the canonical RG flow.

M. Reuter and H. Weyer, JCAP 0412, 001 (2004)

IR Fixed Point Hypothesis.

$$G_k = \frac{g_*}{k^2}$$

Strong Gravity in the IR.

 $\Lambda_k = \lambda_* k^2$

High Redshift Type Ia Supernovae.

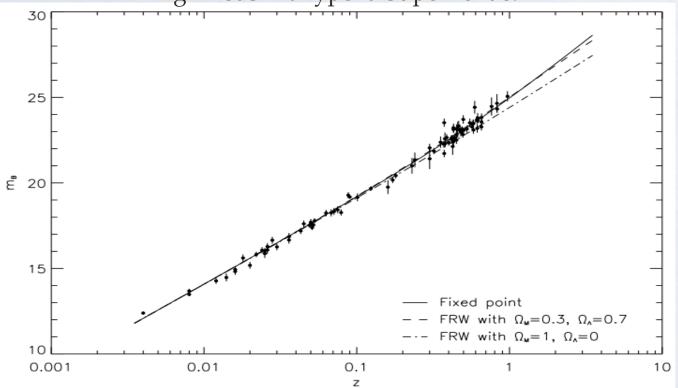


FIG. 1: The measured apparent magnitudes of the supernovae as a function of their redshift. The continuous line represents the prediction of the IRFP cosmology, the dashed one is the best-fit FRW model, and the dot-dashed line is a flat FRW model with zero cosmological constant.

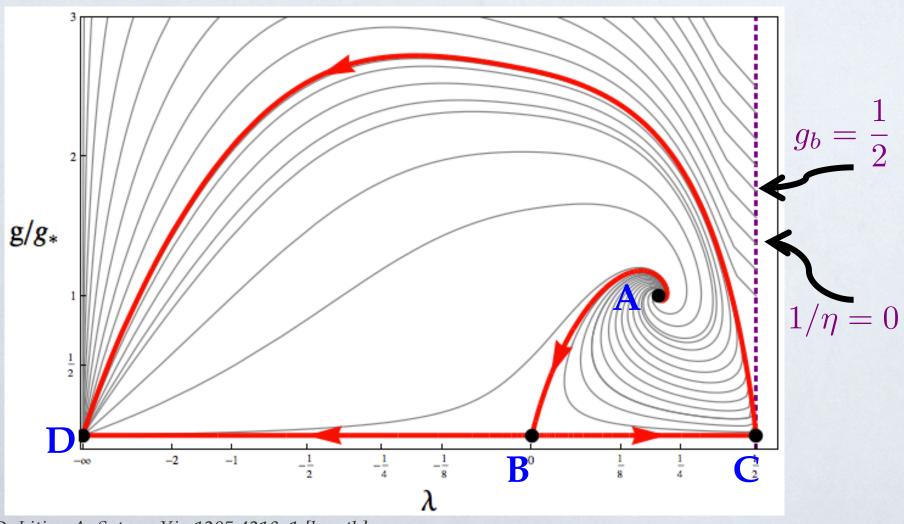
- m_B : Apparent Magnitude.
- z: Red Shift.

E. Bentivegna, A. Bonanno, M. Reuter, JCAP 0401 (2004) 001

Approximations.

Approximation (Leading order in g).

$$\eta = -ga_1$$



D. Litim, A. Satz, arXiv:1205.4218v1 [hep-th]

Close-up on C.

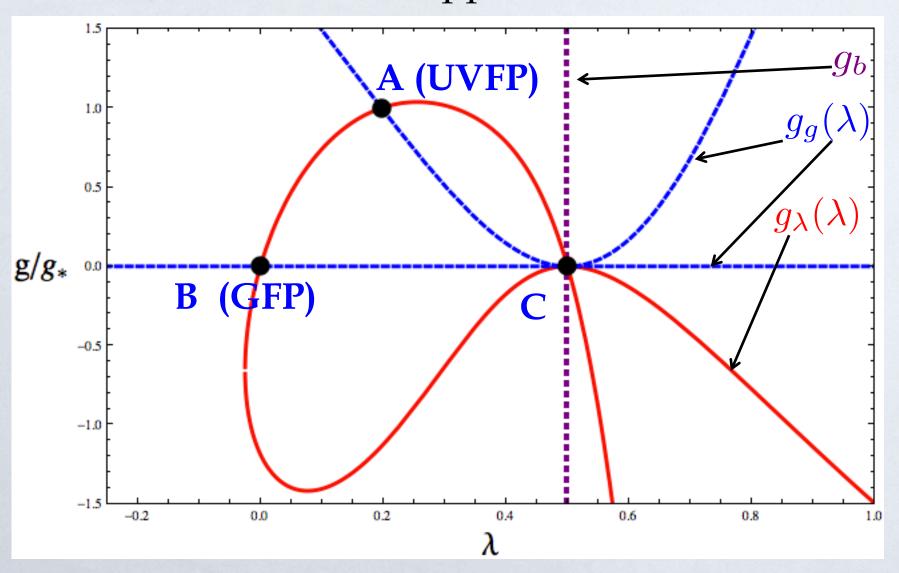
Approximation - Nullclines.

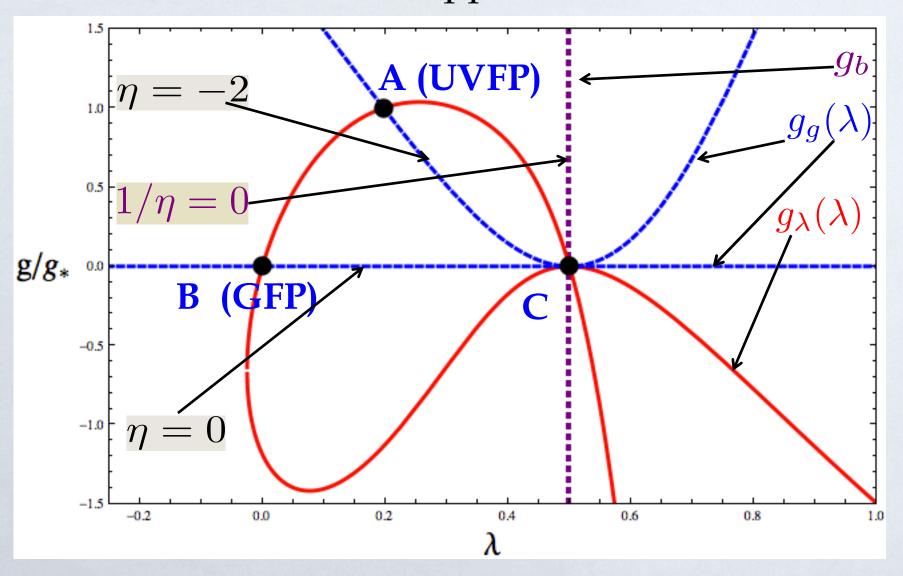
Definition:

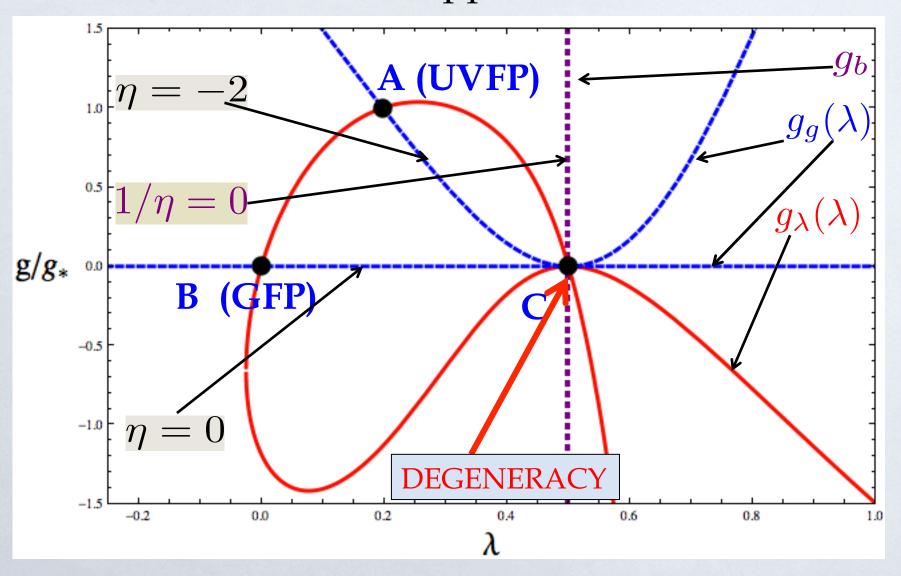
NULLCLINES are integral curves where the beta functions vanish.

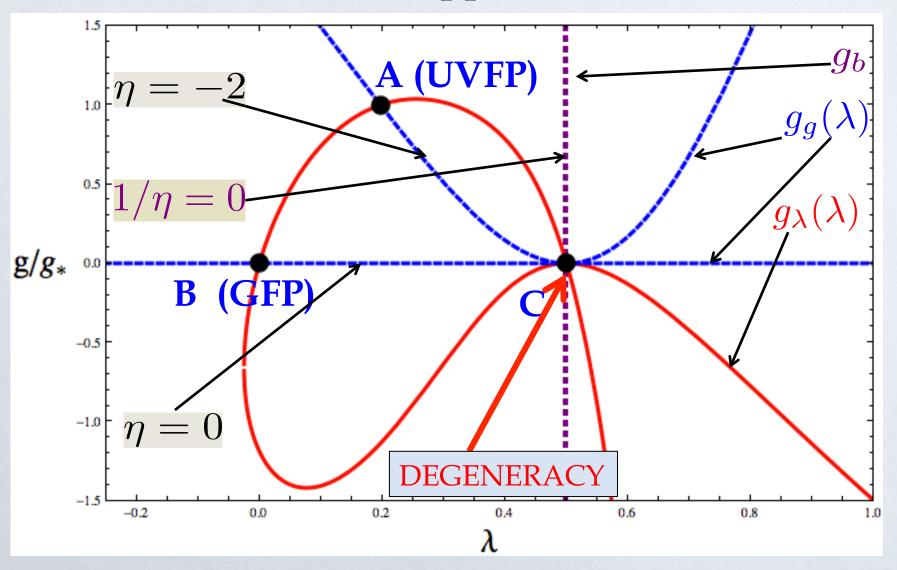
$$\beta_g(\lambda, g_g(\lambda)) = 0$$
 $\beta_\lambda(\lambda, g_\lambda(\lambda)) = 0$

The intersection of two nullclines is a Fixed Point.



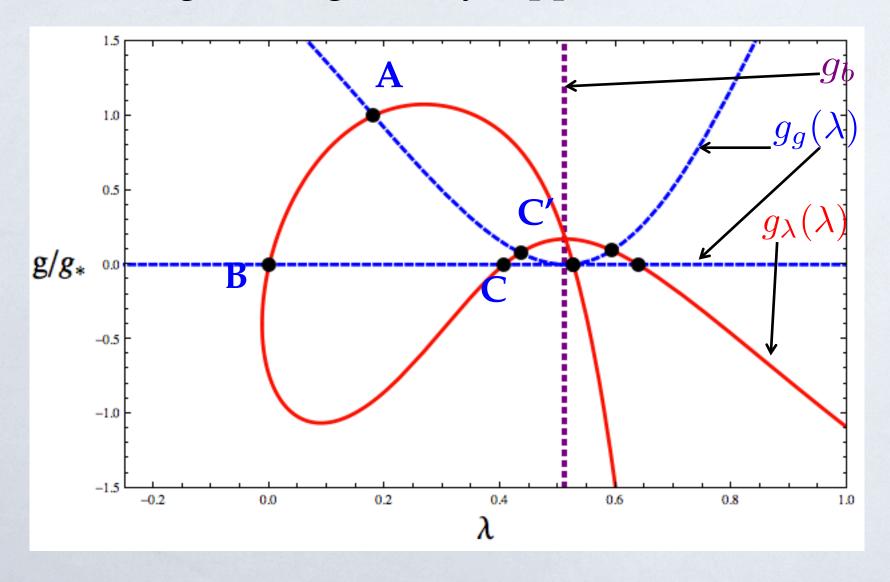


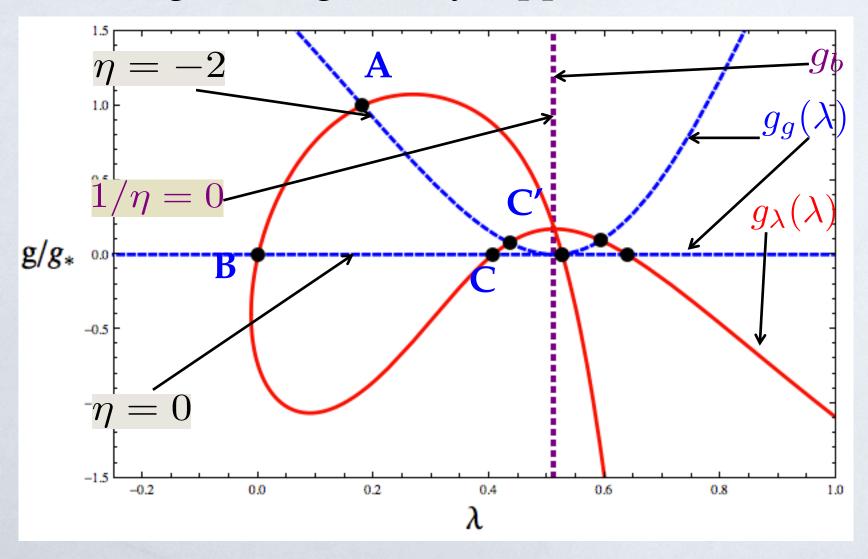


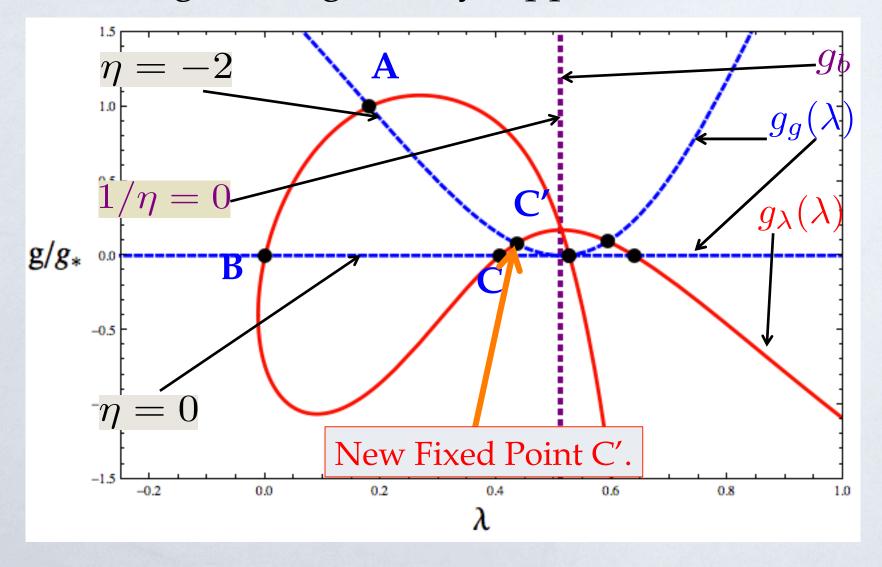


Introduce a small parameter δ to lift the degeneracy.

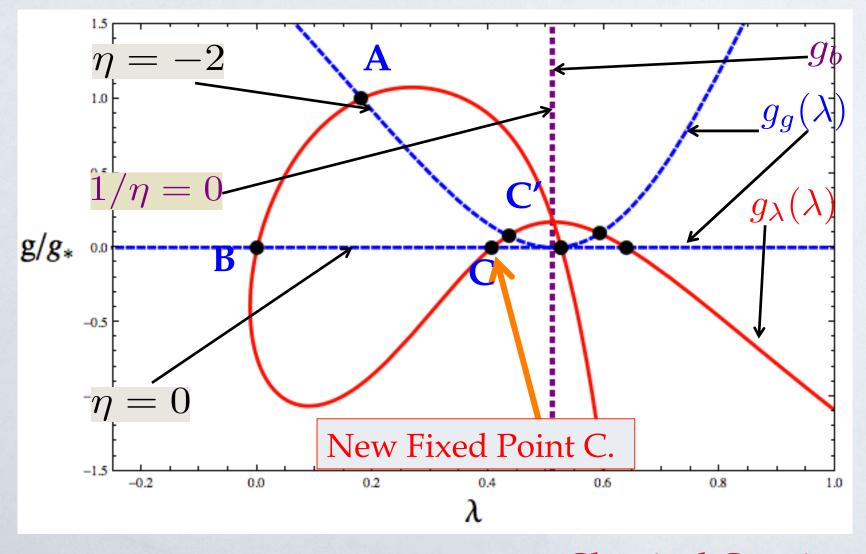
Lifting the degeneracy.





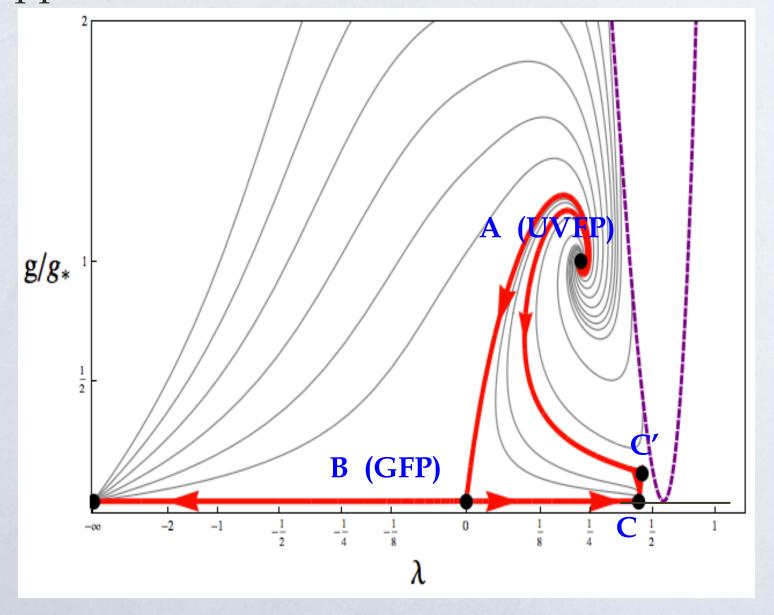


 $C': g_* \neq 0, \quad \lambda_* \neq 0, \quad \eta = -2 \longrightarrow \text{Candidate for IRFP}.$



 $C: g_* = 0, \quad \lambda_* \neq 0, \quad \eta = 0 \longrightarrow$ Classical Gravity.

Approximation 2: Hartree-Fock Resummation.



Stability Analysis of C and C'.

• Critical Exponents: - Eigenvalues of the Stability Matrix.

1. IRFP C':

$$\theta_{C'}^1 = 4 - \frac{16\sqrt{2}}{3}\delta^{1/2} + \frac{80}{3}\delta - \frac{160\sqrt{2}}{3}\delta^{3/2}$$

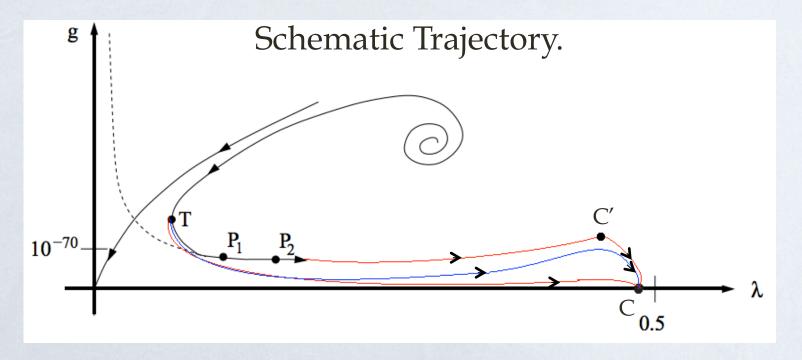
$$\theta_{C'}^2 = -2\sqrt{2}\delta^{-1/2} - \frac{8}{3} + \frac{40\sqrt{2}}{9}\delta^{1/2} - \frac{256}{9}\delta + \frac{6056\sqrt{2}}{81}\delta^{3/2}$$

2. IRFP C:

$$\theta_C^1 = -\frac{4}{\sqrt{3}}\delta^{-1/2} - \frac{8}{3} - \frac{14}{3\sqrt{3}}\delta^{1/2} + 8\delta$$

$$\theta_C^2 = -2$$

New Schematic Flow.



- One special trajectory (separatrix (red)) will hit the FP C' without feeling the effects of C. And another similar but connecting C.
- Trajectories between the separatrices (blue) will be dragged abruptly towards C', spending some time in its vicinity (strong gravity). After that, they will be pushed smoothly to C where it will finish.

Conclusions.

- * Deep Infrared regime of the flow contain a degenerated FP.
- * We have lifted the degeneracy and found new FP.
 - * C': $g_* \neq 0$ $G_k = \frac{g_*}{k^2}$ * C: $g_* = 0$ $G_k \rightarrow constant$
- Use the result in Cosmology (Transition to FP epoch, Accelerated Expansion without Dark Matter?).
- Find a dynamical way to lift the degeneracy.

Thank you!

Poles in the flow.

* The graviton propagator displays a pole around:

$$\sim rac{1}{1-2\lambda}$$
 or $\sim rac{1}{1-2lpha\lambda}$

* Then, fixed point solutions must obey

$$\lambda_* \le \lambda_{bound} = min\left\{\frac{1}{2}, \frac{1}{2\alpha}\right\}$$

Gauge dependence.

* For $0 \le \alpha \le 1$ we computed the mean value and the standard deviation for FP and Critical Exponents:

	λ_A	g_A	$ heta_A^{Re}$	$ heta_A^{Im}$	λ_C	g_C	$ heta_C^1$	$ heta_C^2$	$\lambda_{C'}$	$g_{C'}$	$ heta^1_{C'}$	$ heta_{C'}^2$
$\langle X_{LO} \rangle$	0.1972	0.9124	1.3943	2.5287	0.4316	0	-27.0797	-2	0.4513	0.0424	3.5088	-38.1576
$\langle \Delta X_{LO} angle$	0.0040	0.0053	0.1264	0.0355	0.0010	0	0.3064	0	0.001	0.0003	0.0338	0.2687
$\langle X_{HF} angle$	0.1651	0.8362	1.909	2.5061	0.4635	0	-31.7670	-2	0.4692	0.0126	3.5554	-38.1802
$\langle \Delta X_{HF} \rangle$	0.0018	0.0547	0.0926	0.0752	0.0003	0	0.2688	0	0.0003	0.0001	0.0319	0.3591

* The relative standard deviation ranges:

```
* LO (d = 1/50): 0.22 % for \lambda'_C to 9.06% for Re(\theta_A)

* HF (d = 1/300): 0.06% for \lambda'_C to 6.54% for g_A
```