

Fully developed isotropic turbulence from Navier-Stokes equations

Léonie Canet

ERG 2014 Lefkada

24/09/2014

In collaboration with ...

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

- Nicolás Wschebor Univ. de la República, Montevideo
- Bertrand Delamotte Univ. Paris 6, Pierre & Marie Curie

Presentation outline

KPZ equation

- L. Canet
- Introduction field theory
- point
- exact flow

- Introduction : fully developed isotropic turbulence

- 2 Navier-Stokes equations, field theory and FRG formalism
- 3 Symmetries

 - In Fixed point at Leading Order approximation

5 Exact flow equations in the large wave-number limit

Examples of fully developed turbulence

KPZ equation

L. Canet

Introduction

- field theory
- symmetries
- LO fixed point
- exact flow equations

Ubiquitous phenomenon, experienced in everyday life

turbulence in clouds

Examples of fully developed turbulence

KPZ equation

L. Canet

Introduction

- field theory
- symmetries
- LO fixed point
- exact flow equations

turbulence in industrial smokes

turbulence behind wind turbines

Scale invariance

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

$$S_{p}(\ell) \equiv \langle (\delta v_{\ell})^{p} \rangle \sim \ell^{\xi_{p}}$$

$$\delta \mathbf{v}_{\ell} = \left[\vec{u}(\vec{x} + \vec{\ell}) - \vec{u}(\vec{x})\right] \cdot \vec{\ell}$$

energy spectrum

ONERA S1 wind tunnel F. Anselmet, Y. Gagne,

E.J. Hopfinger,

R.A. Antonia,

J. Fluid Mech. 140 (1984).

Kolmogorov K41 theory for isotropic 3D turbulence

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

assumptions

- homogeneity
- isotropy
- dimensional analysis
- self-similarity

A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR **30, 31, 32** (1941) U. Frisch, *Turbulence*, Cambridge Univ. Press (1995) M. Lesieur, *Turbulence in fluids*, Springer

predictions

$$S_{p}(\ell) = C_{p} \epsilon^{p/3} \ell^{p/3}$$
$$S_{3}(\ell) = -\frac{4}{5} \epsilon \ell$$
$$E(k) = C_{K} \epsilon^{2/3} k^{-5/3}$$

Intermittency

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

deviations from K41

from experiments and numerical simulations

 $\xi_p \neq p/3$

U. Frisch, *Turbulence*, Cambridge Univ. Press (1995) M. Lesieur, *Turbulence in fluids*, Springer (2008)

illustration : von Kárman swirling flow

N. Mordant, E. Lévêque, J.-F. Pinton, New J. Phys. 6 (2004)

Aims of the presentation

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

Feynman's words about turbulence as "the most important unsolved problem of classical physics" still valid

 \longrightarrow full understanding of turbulence *from first principles* still lacking despite huge literature and many results

textbooks on turbulence, (RG) Zhou, Phys. Rep. 488 (2010), (FRG) talk of Steven Mathey

our contribution

- re-visit FRG formalism
- bring out importance of symmetries
- careful analysis of the fixed point in d = 2 and d = 3
- exact flow equations for the 2-point correlation functions in the large momentum regime

L. Canet, B. Delamotte, N. Wschebor, to appear

Microscopic theory

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

Navier Stokes equation with forcing for incompressible fluids

$$\frac{\partial \vec{v}}{\partial t} + \vec{v} \cdot \vec{\nabla} \vec{v} = -\frac{1}{\rho} \vec{\nabla} p + \nu \nabla^2 \vec{v} + \vec{f}$$
$$\vec{\nabla} \cdot \vec{v}(t, \vec{x}) = 0$$

- $\vec{v}(\vec{x},t)$ velocity field and $p(\vec{x},t)$ pressure field
- ho density and u kinematic viscosity
- $\vec{f}(\vec{x}, t)$ gaussian stochastic stirring force with variance

$$\langle f_{\alpha}(t,\vec{x})f_{\beta}(t',\vec{x}')\rangle = 2\delta(t-t')N_{L^{-1},\alpha\beta}(|\vec{x}-\vec{x}'|).$$

with L the integral scale (energy injection)

Field theory

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

Janssen de Dominicis formalism

introduction of Martin-Siggia-Rose response fields $\vec{\vec{v}}$ and \vec{p} to integrate out the stochastic forcing

$$\begin{aligned} \mathcal{Z}[\vec{J}, \bar{\vec{J}}, K, \bar{K}] &= \int \mathcal{D}\vec{v} \, \mathcal{D}p \, \mathcal{D}\vec{v} \, \mathcal{D}\vec{p} \, e^{-(\mathcal{S}_0[\vec{v}, \bar{\vec{v}}, p, \bar{p}] + \Delta \mathcal{S}_0[\vec{v}, \bar{\vec{v}}])} \\ &\times e^{\int_{t, \bar{x}} \{\vec{J} \cdot \vec{v} + \bar{\vec{J}} \cdot \bar{\vec{v}} + Kp + \bar{K}\bar{p}\}} \quad \longleftarrow \text{ sources} \end{aligned}$$

deterministic NS equation

$$\begin{split} \mathcal{S}_{0}[\vec{v}, \vec{\bar{v}}, p, \vec{p}] &= \int_{t, \vec{x}} \vec{v}_{\alpha} \times \boxed{\partial_{t} v_{\alpha} + v_{\beta} \partial_{\beta} v_{\alpha} + \frac{1}{\rho} \partial_{\alpha} p - \nu \nabla^{2} v_{\alpha}} \\ &+ \int_{t, \vec{x}} \vec{p} \times \boxed{\partial_{\alpha} v_{\alpha}} \quad \longleftarrow \text{ incompressibility constraint} \\ \Delta \mathcal{S}_{0}[\vec{v}, \vec{\bar{v}}] &= - \int_{t, \vec{x}, \vec{x}'} \vec{v}_{\alpha} \boxed{N_{L^{-1}, \alpha\beta}(|\vec{x} - \vec{x}'|)} \vec{v}_{\beta} \quad \longleftarrow \text{ force correlator} \end{split}$$

FRG formalism I

regulator term

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

 $\Delta \mathcal{S}_{\kappa}[ec{v},ec{v}] = -\int_{t,ec{x},ec{x}'} ec{v}_{lpha}(t,ec{x}) \mathcal{N}_{\kappa,lphaeta}(ertec{x}-ec{x}'ert) ec{v}_{eta}(t,ec{x}')$

R. Collina and P. Tomassini, Phys. Lett. B 411 (1997)

$$\begin{split} N_{\kappa,\alpha\beta}(\vec{q}) &= \delta_{\alpha\beta} \, D_{\kappa} \, \left(|\vec{q}|/\kappa \right)^2 \hat{n} \left(|\vec{q}|/\kappa \right) \\ \hat{n}(x) &= e^{-x^2} \end{split}$$

to maintain a stationary turbulent flow : $D_\kappa \sim \kappa^{-d}$

not enough to regulate the flow in d = 2

FRG formalism I

regulator term

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

$$\begin{split} \Delta \mathcal{S}_{\kappa}[\vec{v}, \vec{\bar{v}}] &= -\int_{t, \vec{x}, \vec{x}'} \bar{v}_{\alpha}(t, \vec{x}) \mathcal{N}_{\kappa, \alpha \beta}(|\vec{x} - \vec{x}'|) \bar{v}_{\beta}(t, \vec{x}') \\ &+ \int_{t, \vec{x}, \vec{x}'} \bar{v}_{\alpha}(t, \vec{x}) \mathcal{R}_{\kappa, \alpha \beta}(|\vec{x} - \vec{x}'|) v_{\beta}(t, \vec{x}') \end{split}$$

L. Canet, B. Delamotte and N. Wschebor, to appear

$$\begin{aligned} & \mathcal{R}_{\kappa,\alpha\beta}(\vec{q}) = \delta_{\alpha\beta} \, \nu_{\kappa} \, \vec{q}^{\, 2} \hat{r} \, (|\vec{q}|/\kappa) \\ & \hat{r}(x) = a/(e^{x^2} - 1) \end{aligned}$$

scaling is fixed : $\nu_{\kappa} \sim \kappa^{-4/3}$

flow regulated in d = 2 and possible independent scales

FRG formalism II

KPZ equation

L. Canet

Introduction

 Γ_{κ}

field theory

symmetries

LO fixed point

exact flow equations

Legendre transform and effective action

Wetterich's equation for the 2-point functions

$$\partial_{\kappa} \Gamma_{\kappa,ij}^{(2)}(\mathbf{p}) = \operatorname{Tr} \int_{\mathbf{q}} \partial_{\kappa} \mathcal{R}_{\kappa}(\mathbf{q}) \cdot G_{\kappa}(\mathbf{q}) \cdot \left(-\frac{1}{2} \Gamma_{\kappa,ij}^{(4)}(\mathbf{p},-\mathbf{p},\mathbf{q}) + \Gamma_{\kappa,i}^{(3)}(\mathbf{p},\mathbf{q}) \cdot G_{\kappa}(\mathbf{p}+\mathbf{q}) \cdot \Gamma_{\kappa,j}^{(3)}(-\mathbf{p},\mathbf{p}+\mathbf{q})\right) \cdot G_{\kappa}(\mathbf{q})$$

Symmetry I

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

pressure sector of the NS field theory

$$\int_{t,\vec{x}} \left\{ \frac{1}{\rho} \, \vec{v}_{\alpha} \, \partial_{\alpha} \rho + \bar{\rho} \, \partial_{\alpha} v_{\alpha} + K \, \rho + \bar{K} \, \bar{\rho} \right\}$$

infinitesimal gauged shifts of the pressure and response pressure

$$p(t, ec{x})
ightarrow p(t, ec{x}) + \epsilon(t, ec{x})
onumber \ eta(t, ec{x})
ightarrow eta(t, ec{x}) + eta(t, ec{x})
onumber \ eta(t, ec{x})
ightarrow eta(t, ec{x}) + eta(t, ec{x})$$

variation is linear in the fields \longrightarrow Ward identities

$$\frac{\delta\Gamma_{\kappa}}{\delta\rho(t,\vec{x})} = \frac{\delta S_0}{\delta\rho(t,\vec{x})} \quad \text{and} \quad \frac{\delta\Gamma_{\kappa}}{\delta\bar{\rho}(t,\vec{x})} = \frac{\delta S_0}{\delta\bar{\rho}(t,\vec{x})}$$

Non-renormalisation of the pressure sector

Symmetry II

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

infinitesimal time-gauged galilean transformations

$$\mathcal{G}(\vec{\epsilon}(t)) = \left\{egin{array}{ll} \delta v_{lpha}(t, ec{x}) &= -\dot{\epsilon}_{lpha}(t) + \epsilon_{eta}(t) \partial_{eta} v_{lpha}(t, ec{x}) \ \delta ar{v}_{lpha}(t, ec{x}) &= \epsilon_{eta}(t) \partial_{eta} ar{v}_{lpha}(t, ec{x}) \ \delta
ho(t, ec{x}) &= \epsilon_{eta}(t) \partial_{eta}
ho(t, ec{x}) \ \delta ar{
ho}(t, ec{x}) &= \epsilon_{eta}(t) \partial_{eta} ar{
ho}(t, ec{x}) \ \delta ar{
ho}(t, ec{x}) &= \epsilon_{eta}(t) \partial_{eta} ar{
ho}(t, ec{x}) \end{array}
ight.$$

 $\mathcal{G}(\vec{\epsilon}) = \text{translation}$ $\mathcal{G}(\vec{\epsilon} t) = \text{galilean transformation}$

NS action is invariant under $\mathcal{G}(\vec{\epsilon}(t))$ but for

$$\delta S = \delta \Big\{ \int_{t,\vec{x}} \bar{\mathbf{v}}_{\alpha} D_t \mathbf{v}_{\alpha} \Big\} = - \int_{t,\vec{x}} \ddot{\epsilon}_{\alpha}(t) \bar{\mathbf{v}}_{\alpha}$$

 $D_t v_{\alpha} \equiv \partial_t v_{\alpha} + v_{\beta} \partial_{\beta} v_{\alpha}$ Lagrangian time derivative

Non-renormalisation of $\bar{v}_{\alpha}D_tv_{\alpha}$ and invariance under $\mathcal{G}(\vec{\epsilon}(t))$ of the rest of the effective action

Symmetry III

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

infinitesimal time-gauged response field shift

$$\mathcal{R}(\vec{ar{\epsilon}}(t)) = \left\{ egin{array}{cc} \delta ar{v}_lpha(t,ec{x}) &= ar{ar{\epsilon}}_lpha(t) \ \delta ar{
ho}(t,ec{x}) &= v_eta(t,ec{x})ar{ar{\epsilon}}_eta(t) \end{array}
ight.$$

variation of the NS action (at most) linear in the fields \longrightarrow Ward identities

Non-renormalisation of $\bar{v}_{\alpha}\partial_t v_{\alpha}$ and invariance under $\mathcal{R}(\vec{\epsilon}(t))$ of the rest of the effective action

Symmetry : summary

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

general form of the effective action

$$\Gamma_{\kappa}[\vec{u}, \overline{\vec{u}}, p, \vec{p}] = \int_{t, \vec{x}} \left\{ \frac{\vec{u}_{\alpha}}{\left(\partial_{t} u_{\alpha} + u_{\beta} \partial_{\beta} u_{\alpha} + \frac{\partial_{\alpha} p}{\rho}\right) + \vec{p} \partial_{\alpha} u_{\alpha} \right\} \\ + \hat{\Gamma}_{\kappa}[\vec{u}, \overline{\vec{u}}]$$

with $\hat{\Gamma}_{\kappa}[\vec{u}, \overline{\vec{u}}]$ invariant under the two gauged symmetries

we know how to construct it from experience on KPZ equation !

- similar nonlinear Langevin equation (equivalent to Burgers)
- very similar (gauged) symmetries

LO approximation very successful (*talk of Thomas Kloss*) \rightarrow quadratic in the fields with full momentum dependence

L. Canet, H. Chaté, B. Delamotte, N. Wschebor, Phys. Rev. Lett. **104** (2010), Phys. Rev. E **84** (2011) T. Kloss, L. Canet, N. Wschebor, Phys. Rev. E **86** (2012), TK, LC, BD, NW, Phys. Rev. E, **89** (2014)

Composite operator

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

source for the composite operator $v_lpha(ec{x},t)v_eta(ec{x},t)$

 $\mathcal{Z}[\vec{J}, \vec{J}, K, \bar{K}, L] \qquad \propto$

infinitesimal response field shift gauged in time and space

$$\mathcal{R}(\vec{ar{\epsilon}}(t, ec{x})) = \left\{egin{array}{cc} \delta ar{v}_{lpha}(t, ec{x}) &= ar{\epsilon}_{lpha}(t, ec{x}) \ \delta ar{
ho}(t, ec{x}) &= v_{eta}(t, ec{x}) ar{\epsilon}_{eta}(t, ec{x}) \end{array}
ight.$$

local Ward identity for Γ_{κ}

$$\frac{\delta\Gamma_{\kappa}}{\delta\bar{u}_{\alpha}} = \partial_t u_{\alpha} + \frac{1}{\rho}\partial_{\alpha}p - \nu\nabla^2 u_{\alpha} - \partial_{\beta}\left(\frac{\delta\Gamma_{\kappa}}{\delta L_{\alpha\beta}}\right) - u_{\alpha}\partial_{\beta}u_{\beta}$$

generalized response function

vertex functions

 $\int_{t,\vec{x}} \{\vec{J} \cdot \vec{v} + \bar{\vec{J}} \cdot \bar{\vec{v}} + Kp + \bar{K}\bar{p} + \vec{v} \cdot L \cdot \vec{v}\}$

Composite operator

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

source for the composite operator $v_lpha(ec{x},t)v_eta(ec{x},t)$

 $\mathcal{Z}[\vec{J}, \bar{\vec{J}}, K, \bar{K}, L] \qquad \propto$

infinitesimal response field shift gauged in time and space

$$\mathcal{R}(ec{\epsilon}(t,ec{x})) = \left\{egin{array}{cc} \delta ar{v}_lpha(t,ec{x}) &= ar{\epsilon}_lpha(t,ec{x}) \ \delta ar{
ho}(t,ec{x}) &= v_eta(t,ec{x})ar{\epsilon}_eta(t,ec{x}) \end{array}
ight.$$

 $e^{\int_{t,\vec{x}} \{\vec{J}\cdot\vec{v}+\bar{\vec{J}}\cdot\bar{\vec{v}}+Kp+\bar{K}\bar{p}+\vec{v}\cdot\boldsymbol{L}\cdot\vec{v}\}}$

local Ward identity for \mathcal{W}_{κ}

$$\begin{bmatrix} -\partial_t + \nu \nabla^2 + \bar{\kappa} \end{bmatrix} \frac{\delta W_{\kappa}}{\delta J_{\alpha}} - \frac{1}{\rho} \partial_{\alpha} \frac{\delta W_{\kappa}}{\delta K} \bar{J}_{\alpha} - \partial_{\beta} \frac{\delta W_{\kappa}}{\delta L_{\alpha\beta}} + \int_{\bar{x}'} \left\{ 2 \frac{\delta W_{\kappa}}{\delta \bar{J}_{\beta}} N_{\kappa,\alpha\beta} + \frac{\delta W_{\kappa}}{\delta J_{\beta}} R_{\kappa,\alpha\beta} \right\} = 0$$

• derivative w.r.t. $J_{\beta} \implies$ Kárman-Howarth-Monin relation
 \implies four-fifth Kolmogorov law : $S_3(\ell) = -\frac{4}{5} \epsilon \ell$

Composite operator

KPZ equation

L. Canet

Introduction

field theory

symmetries

LO fixed point

exact flow equations

source for the composite operator $v_lpha(ec{x},t)v_eta(ec{x},t)$

 $\mathcal{Z}[\vec{J}, \bar{\vec{J}}, K, \bar{K}, L] \qquad \propto$

infinitesimal response field shift gauged in time and space

$$\mathcal{R}(\vec{ar{\epsilon}}(t, ec{x})) = \left\{egin{array}{cc} \delta ar{v}_{lpha}(t, ec{x}) &= ar{\epsilon}_{lpha}(t, ec{x}) \ \delta ar{
ho}(t, ec{x}) &= v_{eta}(t, ec{x}) ar{\epsilon}_{eta}(t, ec{x}) \end{array}
ight.$$

 $\int_{t \vec{x}} \{ \vec{J} \cdot \vec{v} + \vec{J} \cdot \vec{v} + K p + K \vec{p} + \vec{v} \cdot L \cdot \vec{v} \}$

local Ward identity for \mathcal{W}_{κ}

$$- \ \partial_t + \nu \nabla^2 + \bar{K} \Big] \frac{\delta \mathcal{W}_{\kappa}}{\delta J_{\alpha}} - \frac{1}{\rho} \partial_{\alpha} \frac{\delta \mathcal{W}_{\kappa}}{\delta K} \bar{J}_{\alpha} - \partial_{\beta} \frac{\delta \mathcal{W}_{\kappa}}{\delta \mathbf{L}_{\alpha\beta}} + \int_{\vec{x}'} \Big\{ 2 \frac{\delta \mathcal{W}_{\kappa}}{\delta \bar{J}_{\beta}} \mathbf{N}_{\kappa,\alpha\beta} + \frac{\delta \mathcal{W}_{\kappa}}{\delta J_{\beta}} \mathbf{R}_{\kappa,\alpha\beta} \Big\} = 0$$

• derivatives w.r.t. arbitrary sources

 \implies infinite set of generalized exact relations

Ansatz for $\hat{\Gamma}_{\kappa}$

KPZ equation

L. Canet

Introduction field theory

LO fixed point

exact flow equations

ansatz invariant under the symmetries at Leading Order

$$\hat{\Gamma}_{\kappa}[\vec{u}, \bar{\vec{u}}] = \int_{t, \vec{x}, \vec{x}'} \left\{ \bar{u}_{\alpha} f_{\kappa, \alpha \beta}^{\nu}(\vec{x} - \vec{x}') u_{\beta} - \bar{u}_{\alpha} f_{\kappa, \alpha \beta}^{D}(\vec{x} - \vec{x}') \bar{u}_{\beta} \right\}$$
with $f_{\alpha \beta}^{\nu}(\vec{p} = \vec{0}) = f_{\alpha \beta}^{D}(\vec{p} = \vec{0}) = 0$

nomentum dependent two-point functions

$$\begin{split} \hat{\Gamma}^{(2,0)}_{\alpha\beta}(\omega,\vec{p}) &= 0\\ \hat{\Gamma}^{(1,1)}_{\alpha\beta}(\omega,\vec{p}) &= i\omega\delta_{\alpha\beta} + f^{\nu}_{\alpha\beta}(\vec{p}),\\ \hat{\Gamma}^{(0,2)}_{\alpha\beta}(\omega,\vec{p}) &= -2\,f^{D}_{\alpha\beta}(\vec{p}) \end{split}$$

one non-vanishing vertex function

$$\Gamma^{(2,1)}_{lphaeta\gamma}(\omega_1,ec{p}_1,\omega_2,ec{p}_2)=-i(p_2^lpha\delta_{eta\gamma}+p_1^eta\delta_{lpha\gamma})$$

Numerical integration of the LO flow equations

Fixed point functions

KPZ equation

Energy spectrum and second order structure function

exact flow equations

Kolmogorov scaling

energy spectrum $E(\hat{p}) \sim p^{-5/3} (p/\kappa)^{\beta-\alpha}$ structure function $S_2(\ell) \sim \ell^{2/3} (\kappa \ell)^{\alpha-\beta}$

Analysis of the large wave-number regime

 α and β universal (independent of the stirring profile) cf. R. Collina and P. Tomassini \implies non-decoupling of the large momentum sector but Leading Order approximation not reliable in this regime !

Analysis of the large wave-number regime

KPZ equation

L. Canet

Introduction field theory symmetries

LO fixed point

exact flow equations

Wetterich's equation for the 2-point functions

$$\partial_{\kappa} \Gamma_{\kappa,ij}^{(2)}(\mathbf{p}) = \operatorname{Tr} \int_{\mathbf{q}} \partial_{\kappa} \mathcal{R}_{\kappa}(\mathbf{q}) \cdot G_{\kappa}(\mathbf{q}) \cdot \left(-\frac{1}{2} \Gamma_{\kappa,ij}^{(4)}(\mathbf{p},-\mathbf{p},\mathbf{q}) + \Gamma_{\kappa,i}^{(3)}(\mathbf{p},\mathbf{q}) \cdot G_{\kappa}(\mathbf{p}+\mathbf{q}) \cdot \Gamma_{\kappa,j}^{(3)}(-\mathbf{p},\mathbf{p}+\mathbf{q})\right) \cdot G_{\kappa}(\mathbf{q})$$

LO approximation

- \longrightarrow expansion of the vertices in momentum
 - *internal* momentum cut off $|\vec{q}| \lesssim \kappa$
 - but controlled only for small external momentum $|\vec{p}| \lesssim \kappa$

KPZ equation

L. Canet

point exact flow equations

Exact flow equations in the large wave-number limit I

Wetterich's equation for the 2-point functions

$$\partial_{\kappa} \Gamma_{\kappa,ij}^{(2)}(\mathbf{p}) = \operatorname{Tr} \int_{\mathbf{q}} \partial_{\kappa} \mathcal{R}_{\kappa}(\mathbf{q}) \cdot G_{\kappa}(\mathbf{q}) \cdot \left(-\frac{1}{2} \Gamma_{\kappa,ij}^{(4)}(\mathbf{p},-\mathbf{p},\mathbf{q})\right) \\ + \Gamma_{\kappa,i}^{(3)}(\mathbf{p},\mathbf{q}) \cdot G_{\kappa}(\mathbf{p}+\mathbf{q}) \cdot \Gamma_{\kappa,j}^{(3)}(-\mathbf{p},\mathbf{p}+\mathbf{q})\right) \cdot G_{\kappa}(\mathbf{q})$$

regime of large wave-vector $|ec{ ho}| \gg \kappa$ or $\kappa o 0$

 \implies internal momentum negligible $|\vec{q}| \ll |\vec{p}|$

exact Ward identities for all vertices with one zero momentum

$$\Gamma^{(2,1)}_{\alpha\beta\gamma}(\omega,\vec{q}=\vec{0};\nu,\vec{p}) = -\frac{p^{\alpha}}{\omega} \Big(\Gamma^{(1,1)}_{\beta\gamma}(\omega+\nu,\vec{p}) - \Gamma^{(1,1)}_{\beta\gamma}(\nu,\vec{p}) \Big)$$

$$\Gamma^{(2,2)}_{\alpha\beta\gamma\delta}(\omega,\vec{0},-\omega,\vec{0},\nu,\vec{p}) = \frac{p^{\alpha}p^{\beta}}{\omega^{2}} \Big[\Gamma^{(0,2)}_{\gamma\delta}(\nu+\omega,\vec{p}) - 2\Gamma^{(0,2)}_{\gamma\delta}(\nu,\vec{p}) + \Gamma^{(0,2)}_{\gamma\delta}(\nu-\omega,\vec{p}) \Big]$$

Exact flow equations in the large wave-number limit II

KPZ equation

- L. Canet
- Introduction field theory symmetries
- LO fixed point
- exact flow equations

6

flow equations for the two-point functions

$$\begin{split} P_{s}\Gamma_{\perp}^{(1,1)}(\nu,\vec{p}) &= p^{2}\int_{\omega} \left\{ -\left[\frac{\Gamma_{\perp}^{(1,1)}(\omega+\nu,\vec{p}) - \Gamma_{\perp}^{(1,1)}(\nu,\vec{p})}{\omega}\right]^{2}G_{\perp}^{u\bar{u}}(-\omega-\nu,\vec{p}) \right. \\ &+ \frac{1}{2\omega^{2}} \left[\Gamma_{\perp}^{(1,1)}(\omega+\nu,\vec{p}) - 2\Gamma_{\perp}^{(1,1)}(\nu,\vec{p}) + \Gamma_{\perp}^{(1,1)}(-\omega+\nu,\vec{p})\right] \right\} \\ &\times \frac{(d-1)}{d} \tilde{\partial}_{s} \int_{\vec{q}} G_{\perp}^{uu}(\omega,\vec{q}) \\ P_{s}\Gamma_{\perp}^{(0,2)}(\nu,\vec{p}) &= \dots \end{split}$$

exact closed equations for large \vec{p}

KPZ equation

L. Canet

Introduction field theory symmetries

point exact flow equations

$$\begin{aligned} \partial_{s} \Gamma^{(1,1)}(\nu,\rho) &= \kappa^{2} \nu_{\kappa} \Big\{ \partial_{s} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) \\ &+ \frac{2}{3} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) - \hat{\rho} \partial_{\hat{\rho}} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) - \frac{2}{3} \hat{\nu} \partial_{\hat{\nu}} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) \Big\} \end{aligned}$$

KPZ equation

L. Canet

Introduction field theory symmetries

point

exact flow equations

$$\partial_{s} \Gamma^{(1,1)}(\nu, p) = \kappa^{2} \nu_{\kappa} \left\{ \partial_{s} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) + \frac{2}{3} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) - \hat{\rho} \partial_{\hat{\rho}} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) - \frac{2}{3} \hat{\nu} \partial_{\hat{\nu}} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) \right\}$$

fixed point
$$\partial_s \hat{\Gamma}^{(1,1)} \longrightarrow 0$$

KPZ equation

L. Canet

Introduction field theory symmetries LO fixed

exact flow equations

point

$$\begin{aligned} &\left(\partial_{s}\Gamma^{(1,1)}(\nu,\rho)\right) = \kappa^{2}\nu_{\kappa} \left\{ \partial_{s}\hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) + \frac{2}{3}\hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) - \hat{\rho}\partial_{\hat{\rho}}\hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) - \frac{2}{3}\hat{\nu}\partial_{\hat{\nu}}\hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{\rho}) \right. \end{aligned}$$

fixed point
$$\partial_s \hat{\Gamma}^{(1,1)} \longrightarrow 0$$

decoupling $\partial_s \Gamma^{(1,1)} \longrightarrow 0$

KPZ equation

L. Canet

Introduction field theory symmetries LO fixed

point

exact flow equations

flow equation in terms of dimensionless quantities

$$\partial_{s} \Gamma^{(1,1)}(\nu, \rho) = \kappa^{2} \nu_{\kappa} \left\{ \partial_{s} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) + \left[\frac{2}{3} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) - \hat{\rho} \partial_{\hat{\rho}} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) - \frac{2}{3} \hat{\nu} \partial_{\hat{\nu}} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{\rho}) \right] \right\}$$

fixed point + decoupling

=

oint
$$\partial_{s}\hat{\Gamma}^{(1,1)} \longrightarrow 0$$

ng $\partial_{s}\Gamma^{(1,1)} \longrightarrow 0$
 $\frac{2}{3}\hat{\Gamma}^{(1,1)} - \hat{\rho}\partial_{\hat{\rho}}\hat{\Gamma}^{(1,1)} - \frac{2}{3}\hat{\nu}\partial_{\hat{\nu}}\hat{\Gamma}^{(1,1)} \longrightarrow 0$

KPZ equation

L. Canet

Introduction field theory symmetries LO fixed

exact flow equations

point

$$\begin{array}{l} \mathcal{O}_{s} \Gamma^{(1,1)}(\hat{\nu},\hat{p}) &= \kappa^{-} \hat{\nu}_{\kappa} \left\{ \begin{array}{c} \mathcal{O}_{s} \Gamma^{(1,1)}(\hat{\nu},\hat{p}) \\ + \frac{2}{3} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{p}) - \hat{p} \partial_{\hat{p}} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{p}) - \frac{2}{3} \hat{\nu} \partial_{\hat{\nu}} \hat{\Gamma}^{(1,1)}(\hat{\nu},\hat{p}) \end{array} \right\}$$

fixed point
$$\partial_s \hat{\Gamma}^{(1,1)} \longrightarrow 0$$

+ $\partial_s \Gamma^{(1,1)} \longrightarrow 0$
= $\partial_s \Gamma^{(1,1)} \longrightarrow 0$
scale invariance $\Gamma^{(1,1)}(\nu, p) = p^{2/3} \chi^{(1,1)}(\nu/p^{2/3})$

KPZ equation

L. Canet

Introduction field theory symmetries LO fixed

exact flow equations

point

flow equation in terms of dimensionless quantities

$$\partial_{s} \Gamma^{(1,1)}(\nu, p) = \kappa^{2} \nu_{\kappa} \left\{ \partial_{s} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{p}) + \frac{2}{3} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{p}) - \hat{p} \partial_{\hat{p}} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{p}) - \frac{2}{3} \hat{\nu} \partial_{\hat{\nu}} \hat{\Gamma}^{(1,1)}(\hat{\nu}, \hat{p}) \right\}$$

fixed point
$$\partial_s \hat{\Gamma}^{(1,1)} \longrightarrow 0$$

+ $\partial_s \Gamma^{(1,1)} \longrightarrow 0$
= $\partial_s \Gamma^{(1,1)} \longrightarrow 0$
scale invariance $\Gamma^{(1,1)}(\nu, p) = p^{2/3} \chi^{(1,1)}(\nu/p^{2/3})$

but not consistent in the exact equation \implies the large \vec{p} sector does not decouple

Origin of intermittency

KPZ equation

- L. Canet
- Introduction
- field theory
- symmetries
- LO fixed point

exact flow equations

non-decoupling

- very particular (\neq critical phenomena)
- probably general for all *n*-point functions
- correlation functions remain sensitive to the integral scale and may each have their own scaling

intermittency

- fixed point
 - ⇒ power-law behaviour of the correlation functions
- no decoupling
 - \implies no standard scaling, possibility for multi-scaling, multi-fractality, \ldots
- equations for *n*-point functions in the large *p* regime
 ⇒ calculation of intermittency exponents

Conclusions

KPZ equation

- L. Canet
- Introduction
- field theory
- symmetries
- LO fixed point
- exact flow equations

Summary

- FRG formalism to study turbulence from the NS equations
- exact relations between correlation functions from symmetries
- hints for the emergence of intermittency and multiscaling

Perpectives

- calculation of the deviations to Kolmogorov exponents
- study the inverse cascade of energy in d = 2
- . . .

Thank you !!!

