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Presentation outline

1 Introduction : fully developed isotropic turbulence

2 Navier-Stokes equations, field theory and FRG formalism

3 Symmetries

4 Fixed point at Leading Order approximation

5 Exact flow equations in the large wave-number limit
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Examples of fully developed turbulence

Ubiquitous phenomenon, experienced in everyday life

turbulence in the sea
turbulence in clouds
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Examples of fully developed turbulence

turbulence in
industrial smokes

turbulence behind
wind turbines
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Scale invariance

longitudinal velocity structure functions

Sp(`) ≡ 〈(δv`)p〉∼ `ξp δv` = [~u(~x + ~̀)− ~u(~x)] · ~̀

energy spectrum

ONERA

S1 wind tunnel

F. Anselmet, Y. Gagne,

E.J. Hopfinger,

R.A. Antonia,

J. Fluid Mech. 140 (1984).
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Kolmogorov K41 theory
for isotropic 3D turbulence

assumptions

homogeneity

isotropy

dimensional analysis

self-similarity
A.N. Kolmogorov, Dokl. Akad. Nauk.
SSSR 30, 31, 32 (1941)
U. Frisch, Turbulence,
Cambridge Univ. Press (1995)
M. Lesieur, Turbulence in fluids, Springer

predictions

Sp(`) = Cp ε
p/3 `p/3

S3(`) = −4

5
ε `

E (k) = CK ε
2/3 k−5/3
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Intermittency

deviations from K41

from experiments and
numerical simulations

ξp 6= p/3

U. Frisch, Turbulence,
Cambridge Univ. Press (1995)
M. Lesieur, Turbulence in fluids,
Springer (2008)

• experiment
N , * DNS

- - - K41

illustration : von Kárman swirling flow

N. Mordant, E. Lévêque, J.-F. Pinton, New J. Phys. 6 (2004)
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Aims of the presentation

Feynman’s words about turbulence as
“the most important unsolved problem of classical physics”
still valid

−→ full understanding of turbulence from first principles
still lacking despite huge literature and many results

textbooks on turbulence, (RG) Zhou, Phys. Rep. 488 (2010), (FRG) talk of Steven Mathey

our contribution

re-visit FRG formalism

bring out importance of symmetries

careful analysis of the fixed point in d = 2 and d = 3

exact flow equations for the 2-point correlation functions
in the large momentum regime

L. Canet, B. Delamotte, N. Wschebor, to appear
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Microscopic theory

Navier Stokes equation with forcing for incompressible fluids

∂~v

∂t
+ ~v · ~∇~v = −1

ρ
~∇p + ν∇2~v + ~f

~∇ · ~v(t, ~x) = 0

~v(~x , t) velocity field and p(~x , t) pressure field

ρ density and ν kinematic viscosity
~f (~x , t) gaussian stochastic stirring force with variance

〈
fα(t, ~x)fβ(t ′, ~x ′)

〉
= 2δ(t − t ′)NL−1,αβ(|~x − ~x ′|).

with L the integral scale (energy injection)
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Field theory

Janssen de Dominicis formalism

introduction of Martin-Siggia-Rose response fields ~̄v and p̄
to integrate out the stochastic forcing

Z[ ~J, ~̄J,K , K̄ ] =

∫
D~v DpD~̄v Dp̄ e−(S0[~v ,~̄v ,p,p̄]+∆S0[~v ,~̄v ])

× e
∫
t,~x{ ~J·~v+~̄J·~̄v+Kp+K̄ p̄} ←− sources

deterministic NS equation �

S0[~v , ~̄v , p, p̄] =

∫

t,~x
v̄α ×

�
�

�
�∂tvα + vβ∂βvα + 1

ρ∂αp − ν∇2vα

+

∫

t,~x
p̄ ×

�� ��∂αvα ←− incompressibility constraint

∆S0[~v , ~̄v ] =−
∫

t,~x ,~x ′
v̄α

�� ��NL−1,αβ(|~x − ~x ′|) v̄β ←− force correlator
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FRG formalism I

regulator term

∆Sκ[~v , ~̄v ] = −
∫

t,~x ,~x ′
v̄α(t, ~x)Nκ,αβ(|~x − ~x ′|)v̄β(t, ~x ′)

R. Collina and P. Tomassini, Phys. Lett. B 411 (1997)

Nκ,αβ(~q) = δαβ Dκ (|~q|/κ)2 n̂ (|~q|/κ)

n̂(x) = e−x
2

to maintain a stationary turbulent flow : Dκ ∼ κ−d

not enough to regulate the flow in d = 2
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FRG formalism I

regulator term

∆Sκ[~v , ~̄v ] = −
∫

t,~x ,~x ′
v̄α(t, ~x)Nκ,αβ(|~x − ~x ′|)v̄β(t, ~x ′)

+

∫

t,~x ,~x ′
v̄α(t, ~x)Rκ,αβ(|~x − ~x ′|)vβ(t, ~x ′)

L. Canet, B. Delamotte and N. Wschebor, to appear

Rκ,αβ(~q) = δαβ νκ ~q
2r̂ (|~q|/κ)

r̂(x) = a/(ex
2 − 1)

scaling is fixed : νκ ∼ κ−4/3

flow regulated in d = 2 and possible independent scales
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FRG formalism II

Legendre transform and effective action

Γκ[~u, ~̄u, p, p̄] +Wκ[ ~J, ~̄J,K , K̄ ] =

∫

t,~x

~u · ~J + ~̄u · ~̄J + p K + p̄ K̄

−
∫

t,~x,~x′

{
ūα Rκ,αβ uβ − ūα Nκ,αβ ūβ

}

uα ≡ 〈vα〉 =
δWκ

δJα
ūα ≡ 〈v̄α〉 =

δWκ

δJ̄α

Wetterich’s equation for the 2-point functions

∂κΓ
(2)
κ,ij(p) = Tr

∫

q

∂κRκ(q) · Gκ(q) ·
(
− 1

2
Γ

(4)
κ,ij(p,−p,q)

+Γ
(3)
κ,i (p,q) · Gκ(p + q) · Γ(3)

κ,j(−p,p + q)

)
· Gκ(q)
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Symmetry I

pressure sector of the NS field theory
∫

t,~x

{1

ρ
v̄α ∂αp + p̄ ∂αvα + K p + K̄ p̄

}

infinitesimal gauged shifts of the pressure and response pressure

p(t, ~x)→ p(t, ~x) + ε(t, ~x)

p̄(t, ~x)→ p̄(t, ~x) + ε̄(t, ~x)

variation is linear in the fields −→ Ward identities

δΓκ
δp(t, ~x)

=
δS0

δp(t, ~x)
and

δΓκ
δp̄(t, ~x)

=
δS0

δp̄(t, ~x)

Non-renormalisation of the pressure sector
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Symmetry II

infinitesimal time-gauged galilean transformations

G(~ε (t)) =





δvα(t, ~x) = −ε̇α(t) + εβ(t)∂βvα(t, ~x)
δv̄α(t, ~x) = εβ(t)∂β v̄α(t, ~x)
δp(t, ~x) = εβ(t)∂βp(t, ~x)
δp̄(t, ~x) = εβ(t)∂β p̄(t, ~x)

G(~ε) = translation G(~ε t) = galilean transformation

NS action is invariant under G(~ε (t)) but for

δS = δ
{∫

t,~x
v̄αDtvα

}
= −

∫

t,~x
ε̈α(t)v̄α

Dtvα ≡ ∂tvα + vβ∂βvα Lagrangian time derivative

Non-renormalisation of v̄αDtvα and invariance
under G(~ε (t)) of the rest of the effective action
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Symmetry III

infinitesimal time-gauged response field shift

R(~̄ε (t)) =

{
δv̄α(t, ~x) = ε̄α(t)
δp̄(t, ~x) = vβ(t, ~x)ε̄β(t)

variation of the NS action (at most) linear in the fields
−→ Ward identities

Non-renormalisation of v̄α∂tvα and invariance
under R(~̄ε (t)) of the rest of the effective action
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Symmetry : summary

general form of the effective action

Γκ[~u, ~̄u, p, p̄] =

∫

t,~x

{
ūα
(
∂tuα + uβ∂βuα +

∂αp

ρ

)
+ p̄ ∂αuα

}

+ Γ̂κ[~u, ~̄u]

with Γ̂κ[~u, ~̄u] invariant under the two gauged symmetries

we know how to construct it from experience on KPZ equation !

similar nonlinear Langevin equation (equivalent to Burgers)

very similar (gauged) symmetries

LO approximation very successful (talk of Thomas Kloss)
−→ quadratic in the fields with full momentum dependence

L. Canet, H. Chaté, B. Delamotte, N. Wschebor, Phys. Rev. Lett. 104 (2010), Phys. Rev. E 84 (2011)
T. Kloss, L. Canet, N. Wschebor, Phys. Rev. E 86 (2012), TK, LC, BD, NW, Phys. Rev. E, 89 (2014)
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Composite operator

source for the composite operator vα(~x , t)vβ(~x , t)

Z[ ~J, ~̄J,K , K̄ , L] ∝ e
∫
t,~x{ ~J·~v+~̄J·~̄v+Kp+K̄ p̄+~v ·L·~v}

infinitesimal response field shift gauged in time and space

R(~̄ε (t, ~x)) =

{
δv̄α(t, ~x) = ε̄α(t, ~x)
δp̄(t, ~x) = vβ(t, ~x)ε̄β(t, ~x)

local Ward identity for Γκ

δΓκ
δūα

= ∂tuα +
1

ρ
∂αp − ν∇2uα − ∂β

( δΓκ
δLαβ

)
− uα∂βuβ

generalized response function vertex functions
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Composite operator

source for the composite operator vα(~x , t)vβ(~x , t)

Z[ ~J, ~̄J,K , K̄ , L] ∝ e
∫
t,~x{ ~J·~v+~̄J·~̄v+Kp+K̄ p̄+~v ·L·~v}

infinitesimal response field shift gauged in time and space

R(~̄ε (t, ~x)) =

{
δv̄α(t, ~x) = ε̄α(t, ~x)
δp̄(t, ~x) = vβ(t, ~x)ε̄β(t, ~x)

local Ward identity for Wκ

[
− ∂t + ν∇2 + K̄

] δWκ
δJα

−
1

ρ
∂α

δWκ
δK

J̄α − ∂β
δWκ
δLαβ

+

∫
~x′

{
2
δWκ
δJ̄β

Nκ,αβ +
δWκ
δJβ

Rκ,αβ

}
= 0

derivative w.r.t. Jβ =⇒ Kárman-Howarth-Monin relation

=⇒ four-fifth Kolmogorov law : S3(`) = −4
5 ε `
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Composite operator

source for the composite operator vα(~x , t)vβ(~x , t)

Z[ ~J, ~̄J,K , K̄ , L] ∝ e
∫
t,~x{ ~J·~v+~̄J·~̄v+Kp+K̄ p̄+~v ·L·~v}

infinitesimal response field shift gauged in time and space

R(~̄ε (t, ~x)) =

{
δv̄α(t, ~x) = ε̄α(t, ~x)
δp̄(t, ~x) = vβ(t, ~x)ε̄β(t, ~x)

local Ward identity for Wκ

[
− ∂t + ν∇2 + K̄

] δWκ
δJα

−
1

ρ
∂α

δWκ
δK

J̄α − ∂β
δWκ
δLαβ

+

∫
~x′

{
2
δWκ
δJ̄β

Nκ,αβ +
δWκ
δJβ

Rκ,αβ

}
= 0

derivatives w.r.t. arbitrary sources

=⇒ infinite set of generalized exact relations
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Ansatz for Γ̂κ

ansatz invariant under the symmetries at Leading Order

Γ̂κ[~u, ~̄u] =

∫

t,~x ,~x ′

{
ūα f

ν
κ,αβ(~x − ~x ′) uβ − ūα f

D
κ,αβ(~x − ~x ′) ūβ

}

with f ναβ(~p = ~0) = f D
αβ(~p = ~0) = 0

momentum dependent two-point functions

Γ̂
(2,0)
αβ (ω, ~p) = 0

Γ̂
(1,1)
αβ (ω, ~p) = iωδαβ + f ναβ(~p),

Γ̂
(0,2)
αβ (ω, ~p) = −2 f D

αβ(~p)

one non-vanishing vertex function

Γ
(2,1)
αβγ (ω1, ~p1, ω2, ~p2) = −i(pα2 δβγ + pβ1 δαγ)
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Numerical integration of the LO flow equations

RG evolution

dimensionless
functions

ĥν(p̂) ≡
f̂ ν⊥(p̂)/p̂2

fixed point

10

(33). Let us first consider the expression (12) of the term
∆Sκ. The dimension of the cutoff term Rκ,αβ is given by

[∫

$x′
Rκ,αβ(!x − !x′)

]
= κ2νκ (61)

where νκ is the running viscosity, and the dimension of
the stirring force term Nκ,αβ is by the definition (10)

[∫

$x′
Nκ,αβ(!x − !x′)

]
= Dκ. (62)

We associate two running anomalous dimensions ην
κ and

ηD
κ with these two running coefficients as

ην
κ = −∂s ln νκ and ηD

κ = −∂s ln Dκ (63)

According to the previous definitions, the two functions
r̂(q2/κ2) and n̂(q2/κ2) introduced in Eqs. (10) and (13)
are dimensionless, and the flow of the regulator terms in
Eqs. (59) and (60) are given by

∂sRκ(!q) = νκq2
(

− ην
κr̂(q̂2) − 2q̂2∂q̂2 r̂(q̂2)

)

∂sNκ(!q) = Dκq̂2
(

− (ηD

κ + 2)n̂(q̂2) − 2q̂2∂q̂2 n̂(q̂2)
)

(64)

Let us then analyze the dimensions of the terms of the
LO ansatz. We deduce from Eq. (33) that the di-

mensions of the fields are [u] =
(
κd−2Dκν−1

κ

)1/2
and

[ū] =
(
κd+2νκD−1

κ

)1/2
. We introduce the dimensionless

coupling λ̂κ as

λ =
(
κ−d+4ν3

κD−1
κ

)1/2
λ̂κ (65)

As λ is not renormalized, the flow equation for λ̂κ is
purely dimensional and reads

∂sλ̂κ = λ̂κ

(
d

2
− 2 +

3

2
ην

κ − 1

2
ηD

κ

)
. (66)

It follows that any non-Gaussian fixed point, with λ̂κ "= 0,
is characterized by a single indenpendent exponent, e.g.
ηD

∗ , with ην
∗ = 4/3+(ηD

∗ −d)/3. In particular, if one fixes
ηD

κ = d, according to the requirement that the stirring
force scales as the volume of the system, then at the
fixed point, ην

∗ = 4/3 independently of the dimension.
Finally, according to Eq. (51), the dimensions of the

running functions fν
αβ and fD

αβ are the same as the dimen-
sions of Rκ,αβ and Nκ,αβ and we define the dimensionless

functions ĥν and ĥD

fν
⊥(!p) = νκp2ĥν(p̂) and fD

⊥(!p) = Dκp̂2ĥD(p̂) (67)

Their flow equations are then given by

∂sĥ
ν(p̂) = ην

κĥν(p̂) + p̂∂p̂ĥ
ν(p̂) + ν−1

κ

∂sf
ν
⊥(!p)

p2

∂sĥ
D(p̂) = (ηD

κ + 2)ĥD(p̂) + p̂∂p̂ĥ
D(p̂) + D−1

κ

∂sf
D

⊥(!p)

p̂2

(68)

with the substitutions for dimensionless quantities in the
flow equations (59) and (60) for ∂sf

ν
⊥(!p) and ∂sf

D

⊥(!p).

0
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h 
 

^ 
! (p̂

)

FIG. 1. (Color online) RG evolution of the dimensionless

running function ĥν(p̂) in dimensions d = 3 (upper panel)
and d = 2 (lower panel) starting from the initial condition

ĥν(p̂) = 1 at the microscopic scale κ = Λ. The red arrow
indicates the evolution, i.e. decreasing RG scales κ.

VIII. FIXED POINT SOLUTIONS IN d = 2 AND
d = 3

In this section, we proceed to the numerical integration
of the dimensionless LO flow equations (68), both in d =
2 and d = 3.

A. Fixed point functions ĥν and ĥD

The flow equations (68) for ĥD and ĥD are integrated
numerically, fixing ηD = d and hence ην = 4/3, from the

initial conditions ĥD(!p) = 0 and ĥν(!p) = 1, and differ-

ent values of λ̂. The details of the numerical procedure
are summarized in Appendix D. The flow always leads
to a fixed point, independently of the initial conditions,
and without fine-tuning any parameter. Hence the corre-
sponding stationary regime is universal. Along the flow,

the two functions ĥν,D are smoothly deformed to acquire
a fixed form, which is illustrated on the example of the

function ĥν in d = 2 and d = 3 in Fig. 1. The fixed
point profile of the two functions in both dimensions is
represented in logarithmic scales in Fig. 2. It shows that
both functions decay algebraically at large wave-number,
with the respective exponents

ĥν(p̂) ∼ p̂−4/3+α and ĥD(p̂) ∼ p̂−(d+2)+β (69)

with α $ β $ 0.33. The values of α and β we find are in
agreement with the values estimated in d = 3 in Ref. [?
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Fixed point functions 11

0,01 1 100
p̂

1e-15

1e-12

1e-09

1e-06

0,001

1

h^ D(p̂)
h^ !(p̂)

d=3

0,01 1 100
p̂

1e-12

1e-09

1e-06

0,001

1

h^D(p̂)
h^ !(p̂)

d=2

FIG. 2. (Color online) Fixed point functions ĥD(p̂) (black

upper curves) and ĥν(p̂) (red lower curves) in dimensions d =
3 (left panel) and d = 2 (right panel). Both horizontal and
vertical axes are in logarithmic scales.

]. It was shown in particular in this work that these expo-
nents are independent of the choice of the stirring profile.
Here, their dependence in the regulator scheme (via the a
parameter in Eq. (14)) could also be studied in the same

way. However, although we expect the functions ĥν,D to
be accurately described for small external wave-number,
the large wave-number sector is uncontrolled within the
LO approximation, as shown in the next section. As a
consequence, it is meaningless to refine these estimates.

B. Energy spectrum

Within the LO approximation, the 2-point functions
are given by

Γ
(0,2)
⊥ (ω, "q) = −2Dκq̂2ĥD("̂q)

Γ
(1,1)
⊥ (ω, "q) = νκκ2(q̂2ĥν(q̂) + iω̂). (70)

Inserting these expressions into Eq. (45) and performing
the integral over the frequency, one obtains for the energy
spectrum

E(d)("p) =
2πd/2

Γ(d/2)
(d − 1) p̂d−1 κ−5/3 ĥD(p̂)

ĥν(p̂)
. (71)

The corresponding energy spectra in d = 3 and d = 2
are displayed on Fig. 3. At small wave-number, the two

functions ĥν,D(p̂) tends to a finite constant. Followingly,
the energy spectra grow as

E(d)("p) ∼ p̂d−1 κ−5/3 ∼ pd−1κ−d−2/3 (72)

with the expected power law pd−1 reflecting equiparti-
tion of energy. At large wave-number, the two functions

ĥν,D(p̂) follow the asymptotics (69) and the energy spec-
tra thus decay algebraically as

E(d)("p) ∼ p−5/3
( p

κ

)β−α

(73)

which is the Kolmogorov result when α = β.a com-
pleter...

FIG. 3. (Color online) Energy spectrum (multiplied by κ5/3)
of the turbulent flow in dimensions d = 3 and d = 2 as a func-
tion of the dimensionless wave-vector p̂ = p/κ. The dashed
lines are guidelines for the eyes.

C. Second order structure function

Within the LO approximation, one obtains for the sec-
ond order structure function (49)

S(2)(() = −γd κ−2/3

∫ ∞

0

dq̂ q̂d−1 ĥD(q̂)

ĥν(q̂)
Id(κq̂(). (74)

Let us determine the behavior of this expression within
the inertial regime, which corresponds to the limit κ( #
1. Performing the change of variables x = κq̂(, one ob-
tains

S(2)(() = −γd κ−2/3(κ()−d

∫ ∞

0

dx xd−1 ĥD( x
κ% )

ĥν( x
κ% )

Id(x)

∼ −γd κα−β(2/3+α−β

∫ ∞

0

dx x−5/3+β−α Id(x)

(75)

where in the second equality the asymptotics (69) are
used. The integral over x is both IR and UV finite. One
hence recovers the Kolmogorov scaling for α = β.a com-
pleter...

D. Large wave-number sector and limit of the LO
approximation

In this section, we analyze the large wave-number limit
of the flow equations (68). This analysis unveils that the
nonlinear parts of these equations (59) and (60) do not
become negligible at the fixed point compared to the lin-
ear parts for large external wave-vector "p, and hence the
large wave-number sector does not decouple. The conse-
quence is that the existence of the fixed point does not
automatically leads to scale invariance as in usual situ-
ations. This implies that the large wave-number sector
is not determined by the small wave-number one, and
has to be studied per se. However, this sector in not
controlled within the LO approximation. As a matter
of fact, the LO approximation is fully justified when all
the wave-numbers are small as it relies on an expansion
at small wave-numbers of the vertices. Whereas this is
always verified for the internal wave-vector due to the
presence of the regulator term ∂κRκ which effectively

asymptotics in d = 3 : deviations from naive scaling

ĥν(p̂) ∼ p̂−4/3+α α ' 0.33

ĥD(p̂) ∼ p̂−(d+2)+β β ' 0.33
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upper curves) and ĥν(p̂) (red lower curves) in dimensions d =
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]. It was shown in particular in this work that these expo-
nents are independent of the choice of the stirring profile.
Here, their dependence in the regulator scheme (via the a
parameter in Eq. (14)) could also be studied in the same

way. However, although we expect the functions ĥν,D to
be accurately described for small external wave-number,
the large wave-number sector is uncontrolled within the
LO approximation, as shown in the next section. As a
consequence, it is meaningless to refine these estimates.

B. Energy spectrum

Within the LO approximation, the 2-point functions
are given by

Γ
(0,2)
⊥ (ω, "q) = −2Dκq̂2ĥD("̂q)

Γ
(1,1)
⊥ (ω, "q) = νκκ2(q̂2ĥν(q̂) + iω̂). (70)

Inserting these expressions into Eq. (45) and performing
the integral over the frequency, one obtains for the energy
spectrum

E(d)("p) =
2πd/2

Γ(d/2)
(d − 1) p̂d−1 κ−5/3 ĥD(p̂)

ĥν(p̂)
. (71)

The corresponding energy spectra in d = 3 and d = 2
are displayed on Fig. 3. At small wave-number, the two

functions ĥν,D(p̂) tends to a finite constant. Followingly,
the energy spectra grow as

E(d)("p) ∼ p̂d−1 κ−5/3 ∼ pd−1κ−d−2/3 (72)

with the expected power law pd−1 reflecting equiparti-
tion of energy. At large wave-number, the two functions

ĥν,D(p̂) follow the asymptotics (69) and the energy spec-
tra thus decay algebraically as

E(d)("p) ∼ p−5/3
( p

κ

)β−α

(73)

which is the Kolmogorov result when α = β.a com-
pleter...
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FIG. 3. (Color online) Energy spectrum (multiplied by κ5/3)
of the turbulent flow in dimensions d = 3 and d = 2 as a func-
tion of the dimensionless wave-vector p̂ = p/κ. The dashed
lines are guidelines for the eyes.

C. Second order structure function

Within the LO approximation, one obtains for the sec-
ond order structure function (49)

S(2)(() = −γd κ−2/3

∫ ∞

0

dq̂ q̂d−1 ĥD(q̂)

ĥν(q̂)
Id(κq̂(). (74)

Let us determine the behavior of this expression within
the inertial regime, which corresponds to the limit κ( #
1. Performing the change of variables x = κq̂(, one ob-
tains

S(2)(() = −γd κ−2/3(κ()−d

∫ ∞

0

dx xd−1 ĥD( x
κ% )

ĥν( x
κ% )

Id(x)

∼ −γd κα−β(2/3+α−β

∫ ∞

0

dx x−5/3+β−α Id(x)

(75)

where in the second equality the asymptotics (69) are
used. The integral over x is both IR and UV finite. One
hence recovers the Kolmogorov scaling for α = β.a com-
pleter...

D. Large wave-number sector and limit of the LO
approximation

In this section, we analyze the large wave-number limit
of the flow equations (68). This analysis unveils that the

Kolmogorov scaling

energy spectrum E (p̂) ∼ p−5/3(p/κ)β−α

structure function S2(`) ∼ `2/3(κ`)α−β
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]. It was shown in particular in this work that these expo-
nents are independent of the choice of the stirring profile.
Here, their dependence in the regulator scheme (via the a
parameter in Eq. (14)) could also be studied in the same

way. However, although we expect the functions ĥν,D to
be accurately described for small external wave-number,
the large wave-number sector is uncontrolled within the
LO approximation, as shown in the next section. As a
consequence, it is meaningless to refine these estimates.

B. Energy spectrum

Within the LO approximation, the 2-point functions
are given by

Γ
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⊥ (ω, "q) = −2Dκq̂2ĥD("̂q)

Γ
(1,1)
⊥ (ω, "q) = νκκ2(q̂2ĥν(q̂) + iω̂). (70)

Inserting these expressions into Eq. (45) and performing
the integral over the frequency, one obtains for the energy
spectrum

E(d)("p) =
2πd/2

Γ(d/2)
(d − 1) p̂d−1 κ−5/3 ĥD(p̂)
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. (71)
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the energy spectra grow as

E(d)("p) ∼ p̂d−1 κ−5/3 ∼ pd−1κ−d−2/3 (72)

with the expected power law pd−1 reflecting equiparti-
tion of energy. At large wave-number, the two functions

ĥν,D(p̂) follow the asymptotics (69) and the energy spec-
tra thus decay algebraically as

E(d)("p) ∼ p−5/3
( p

κ

)β−α

(73)

which is the Kolmogorov result when α = β.a com-
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FIG. 3. (Color online) Energy spectrum (multiplied by κ5/3)
of the turbulent flow in dimensions d = 3 and d = 2 as a func-
tion of the dimensionless wave-vector p̂ = p/κ. The dashed
lines are guidelines for the eyes.

C. Second order structure function

Within the LO approximation, one obtains for the sec-
ond order structure function (49)

S(2)(() = −γd κ−2/3

∫ ∞

0

dq̂ q̂d−1 ĥD(q̂)

ĥν(q̂)
Id(κq̂(). (74)

Let us determine the behavior of this expression within
the inertial regime, which corresponds to the limit κ( #
1. Performing the change of variables x = κq̂(, one ob-
tains

S(2)(() = −γd κ−2/3(κ()−d

∫ ∞

0

dx xd−1 ĥD( x
κ% )

ĥν( x
κ% )

Id(x)

∼ −γd κα−β(2/3+α−β

∫ ∞

0

dx x−5/3+β−α Id(x)

(75)

where in the second equality the asymptotics (69) are
used. The integral over x is both IR and UV finite. One
hence recovers the Kolmogorov scaling for α = β.a com-
pleter...

D. Large wave-number sector and limit of the LO
approximation

In this section, we analyze the large wave-number limit
of the flow equations (68). This analysis unveils that the
nonlinear parts of these equations (59) and (60) do not
become negligible at the fixed point compared to the lin-
ear parts for large external wave-vector "p, and hence the
large wave-number sector does not decouple. The conse-
quence is that the existence of the fixed point does not
automatically leads to scale invariance as in usual situ-
ations. This implies that the large wave-number sector
is not determined by the small wave-number one, and
has to be studied per se. However, this sector in not
controlled within the LO approximation. As a matter
of fact, the LO approximation is fully justified when all
the wave-numbers are small as it relies on an expansion
at small wave-numbers of the vertices. Whereas this is
always verified for the internal wave-vector due to the
presence of the regulator term ∂κRκ which effectively

α and β universal (independent of the stirring profile)
cf. R. Collina and P. Tomassini

=⇒ non-decoupling of the large momentum sector
but Leading Order approximation not reliable in this regime !
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Wetterich’s equation for the 2-point functions

∂κΓ
(2)
κ,ij(p) = Tr

∫

q

∂κRκ(q) · Gκ(q) ·
(
− 1

2
Γ

(4)
κ,ij(p,−p,q)

+Γ
(3)
κ,i (p,q) · Gκ(p + q) · Γ(3)

κ,j(−p,p + q)

)
· Gκ(q)

LO approximation

−→ expansion of the vertices in momentum

internal momentum cut off |~q| . κ
but controlled only for small external momentum |~p| . κ
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Exact flow equations
in the large wave-number limit I

Wetterich’s equation for the 2-point functions

∂κΓ
(2)
κ,ij(p) = Tr

∫

q

∂κRκ(q) · Gκ(q) ·
(
− 1

2
Γ

(4)
κ,ij(p,−p,q)

+Γ
(3)
κ,i (p,q) · Gκ(p + q) · Γ(3)

κ,j(−p,p + q)

)
· Gκ(q)

regime of large wave-vector |~p| � κ or κ→ 0

=⇒ internal momentum negligible |~q| � |~p|�� ��exact Ward identities for all vertices with one zero momentum

Γ
(2,1)
αβγ(ω, ~q = ~0; ν, ~p) = −

pα

ω

(
Γ

(1,1)
βγ (ω + ν, ~p)− Γ

(1,1)
βγ (ν, ~p)

)
Γ

(2,2)
αβγδ(ω,~0,−ω,~0, ν, ~p) =

pαpβ

ω2

[
Γ

(0,2)
γδ (ν + ω, ~p)− 2Γ

(0,2)
γδ (ν, ~p) + Γ

(0,2)
γδ (ν − ω, ~p)

]
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Exact flow equations
in the large wave-number limit II

flow equations for the two-point functions

∂sΓ
(1,1)
⊥ (ν, ~p) = p2

∫
ω

{
−
[

Γ
(1,1)
⊥ (ω + ν, ~p)− Γ

(1,1)
⊥ (ν, ~p)

ω

]2

Guū
⊥ (−ω − ν, ~p)

+
1

2ω2

[
Γ

(1,1)
⊥ (ω + ν, ~p)− 2Γ

(1,1)
⊥ (ν, ~p) + Γ

(1,1)
⊥ (−ω + ν, ~p)

]}

×
(d − 1)

d
∂̃s

∫
~q
Guu
⊥ (ω, ~q)

∂sΓ
(0,2)
⊥ (ν, ~p) = . . .

exact closed equations for large ~p
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Non-decoupling of the large wave-number sector

flow equation in terms of dimensionless quantities�� ��∂sΓ(1,1)(ν, p) = κ2νκ

{�� ��∂s Γ̂(1,1)(ν̂, p̂)

+
�
�

�
�2

3 Γ̂(1,1)(ν̂, p̂)− p̂∂p̂Γ̂(1,1)(ν̂, p̂)− 2
3 ν̂∂ν̂ Γ̂(1,1)(ν̂, p̂)

}
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Non-decoupling of the large wave-number sector

flow equation in terms of dimensionless quantities�� ��∂sΓ(1,1)(ν, p) = κ2νκ

{�� ��∂s Γ̂(1,1)(ν̂, p̂)

+
�
�

�
�2

3 Γ̂(1,1)(ν̂, p̂)− p̂∂p̂Γ̂(1,1)(ν̂, p̂)− 2
3 ν̂∂ν̂ Γ̂(1,1)(ν̂, p̂)

}

fixed point
�� ��∂s Γ̂(1,1) −→ 0
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Non-decoupling of the large wave-number sector

flow equation in terms of dimensionless quantities�� ��∂sΓ(1,1)(ν, p) = κ2νκ

{�� ��∂s Γ̂(1,1)(ν̂, p̂)

+
�
�

�
�2

3 Γ̂(1,1)(ν̂, p̂)− p̂∂p̂Γ̂(1,1)(ν̂, p̂)− 2
3 ν̂∂ν̂ Γ̂(1,1)(ν̂, p̂)

}

fixed point
�� ��∂s Γ̂(1,1) −→ 0

decoupling
�� ��∂sΓ(1,1) −→ 0
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Non-decoupling of the large wave-number sector

flow equation in terms of dimensionless quantities�� ��∂sΓ(1,1)(ν, p) = κ2νκ

{�� ��∂s Γ̂(1,1)(ν̂, p̂)

+
�
�

�
�2

3 Γ̂(1,1)(ν̂, p̂)− p̂∂p̂Γ̂(1,1)(ν̂, p̂)− 2
3 ν̂∂ν̂ Γ̂(1,1)(ν̂, p̂)

}

fixed point
�� ��∂s Γ̂(1,1) −→ 0

+

decoupling
�� ��∂sΓ(1,1) −→ 0

= �� ��2
3 Γ̂(1,1) − p̂∂p̂Γ̂(1,1) − 2

3 ν̂∂ν̂ Γ̂(1,1) −→ 0
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Non-decoupling of the large wave-number sector

flow equation in terms of dimensionless quantities�� ��∂sΓ(1,1)(ν, p) = κ2νκ

{�� ��∂s Γ̂(1,1)(ν̂, p̂)

+
�
�

�
�2

3 Γ̂(1,1)(ν̂, p̂)− p̂∂p̂Γ̂(1,1)(ν̂, p̂)− 2
3 ν̂∂ν̂ Γ̂(1,1)(ν̂, p̂)

}

fixed point
�� ��∂s Γ̂(1,1) −→ 0

+

decoupling
�� ��∂sΓ(1,1) −→ 0

=

scale invariance
�
�

�
�Γ(1,1)(ν, p) = p2/3χ(1,1)

(
ν/p2/3

)
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Non-decoupling of the large wave-number sector

flow equation in terms of dimensionless quantities�� ��∂sΓ(1,1)(ν, p) = κ2νκ

{�� ��∂s Γ̂(1,1)(ν̂, p̂)

+
�
�

�
�2

3 Γ̂(1,1)(ν̂, p̂)− p̂∂p̂Γ̂(1,1)(ν̂, p̂)− 2
3 ν̂∂ν̂ Γ̂(1,1)(ν̂, p̂)

}

fixed point
�� ��∂s Γ̂(1,1) −→ 0

+

decoupling
�� ��∂sΓ(1,1) −→ 0

=

scale invariance
�
�

�
�Γ(1,1)(ν, p) = p2/3χ(1,1)

(
ν/p2/3

)

but not consistent in the exact equation
=⇒ the large ~p sector does not decouple
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Origin of intermittency

non-decoupling

very particular (6= critical phenomena)

probably general for all n-point functions

correlation functions remain sensitive to the integral scale
and may each have their own scaling

intermittency

fixed point
=⇒ power-law behaviour of the correlation functions

no decoupling
=⇒ no standard scaling, possibility for multi-scaling,
multi-fractality, . . .

equations for n-point functions in the large p regime
=⇒ calculation of intermittency exponents
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Conclusions

Summary

FRG formalism to study turbulence from the NS equations

exact relations between correlation functions
from symmetries

hints for the emergence of intermittency and multiscaling

Perpectives

calculation of the deviations to Kolmogorov exponents

study the inverse cascade of energy in d = 2

. . .



Thank you ! ! !
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