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S= /d“x {%(%)2 = %(aﬂ)z‘mw}.

The cubic Galileon theory describes the dynamics of the scalar
mode that survives in the decoupling limit of the DGP model
(Dvali, Gabadadze, Porrati).

The action contains a higher-derivative term, cubic in the field
m(x), with a dimensionful coupling that sets the scale A at which
the theory becomes strongly coupled.

V= 1//\3
A ~ (mPMp)'/3 with m ~ H ~ M2/ Mz
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The action is invariant under the Galilean transformation

7(x) = 7(x) + b,x* + ¢, up to surface terms.

In the Galileon theory additional terms can also be present, but
the theory is ghost-free: EOM is second order (Nicolis, Rattazzi,
Trincherini).

Nonlinearities become important below the Vainshtein radius

ry ~ (M/NSMgp;)'/3.

Does this contruction survive quantum corrections?

The DBl action S = [ d*xu+/1 + 0, w0k corresponds to the
simplest term of a theory of embedded surfaces.

The effective theory of embedded surfaces can be used in order
to reproduce the Galileon theory at low energies (97)? << 1 (de
Rham, Tolley).
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Classical solutions and Vainshtein mechanism.

Renormalization of the cubic Galileon theory, perturbative
background.

Heat-kernel method for nontrivial backgrounds.

Suppression of quantum corrections by the Vainshtein
mechanism.

Classicalon.
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The classical EOM for cubic Galileon is

1 1 ” -
Or — el (Orm) + F@,ﬁ,ﬂr@"[‘) 7= T53(X)

Spherically symmetric solution (w = r?)

1 16vcC
7rZ:I(W):g 11— 1+W
ry ~ (Cz/)%
For r < r, we have m ~ \/c/v+/r.
For r > r, we have = ~ c/r.
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Perturbative background.

S = / d*x { (Om )2——(87r) Or+~ (871')2 ((Or)? (auayw)2)+...}.

If a momentum cutoff is used, of the order of the fundamental
scale A of the theory, and the couplings are taken of order A, the
one-loop effective action of the Galileon theory is, schematically,
(Luty, Porrati, Nicolis, Rattazzi)

2 2 m
M N/d“xz [A4+/\282+84Iog (8 )] <8A—37T>

Non-renormalization of the Galileon couplings (de Rham,
Gabadadze, Heisenberg, Pirtskhalava, Hinterbichler, Trodden,
Wesley).

Explicit one-loop calculation using dimensional regularization
(Paula Netto, Shapiro).
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Tree-level action in Euclidean d-dimensional space
1 v
— d = 2_ 7 2

S—/d X{z(aﬂ) 2(8%) D?T}.
Field fluctuation 7 around the background 7. The quadratic part
is

2) _ d 1 v v

S = [ d% —§5ﬂ'|:|(571'+ 5571’ [2(0r)0ém — 2(0"0"7)0,,0,0m] ¢ .

Define
K=-0O Yy =2v(0Onr) O Yo = —2v(0,0,m) 0"0"

One-loop contribution to the effective action
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Expanding the logarithm up to O (»2) we obtain

tr (SiK'5 K™Y = 4v2(2m)? /ddkk47r(k k)/(2 g

tr (Z1K XK1 = —40%( 27r)d/ddkk4 (k)7 d/ @)

d
tr (22K7122K71) e 4V2(27T)d/‘ddk7?(k)ﬁ(_k){ d(d3+ 2) K (gﬂ.l))d

(d-8)(d—1) 4 [ d% 1
e /(

d(d+2)(d+4 2r)9 p?
(d—24)(d-2)(d 1) ¢ [ AP 1
~d(d+2)(d+4)(d+6) /(2w)d;? :
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Putting everything together, we obtain in position space, the
one-loop correction to the effective action

d? —1 ad
(2) /dde(x){ ) < (271";)0') 2
(d—8)(d—1) ([ d% 1
@+ 2)d+4) (/ @n)? E) o
(d—24)(d—2)(d - 1) dp 1
Tddr2)(d+4)d+6) (/ @n)? y) D4}7f(X)-

The momentum integrals are defined with UV and IR cutoffs.
If dimensional regularization near d = 4 is used, the first two
terms are absent. The third one corresponds to a counterterm
~ 1/e (Paula Netto, Shapiro).

No corrections to the Galileon couplings.

Terms outside the Galileon theory are generated.
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Pertubation theory:
4 4 242 4 o? 2 _\m
Mo~ [ a7 [A* 4+ N20% + 0% log 2z )| (0Pm)"

m

Split the field as = = ¢ + or.
The action includes terms ~ v2A*(vOrg)"(O67)?

But vOmg ~ (r\//r)s/2 > 1 below the Vainshtein radius.
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Our task is to evaluate the one-loop effective action

M= %trlog A

with A= -0+ 20 (0r)0— 20 (9,0,7) 040"
around the background (w = r?)

1 16vc

The propagation of classical fluctuations in suppressed below
the Vainshtein radius ry ~ (vc)!/3, where vClrg ~ (ry/r)*/% > 1.
What about the quantum fluctuations?
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Calculate the heat kernel

4 o .
h(x,x',€) = / (gﬂl)(4e”‘x e Lex

The one-loop effective action can be obtained as
M= —1/ %/d“xh(x,x,e).
2 1/A2 €

h(x, x,€) = d*k e—kze\/EX(k,O)+eY(k,8) (1)
09I (2m)*e? :

Expand in powers of \/e. The result is the derivative expansion of
the effective action.
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The diagonal part of the heat kernel becomes

h(x,x,€) = / el 1 expy —k2 4 2i\/ek"d,, + O

,X,€) = (27r)4 — €Xp € 1€
+2v0mr ( — 2i\/ek"d,, — el])
—20v0,0, (K"'K" — 2i\/ek"d" — 68“6”)}

Expand in e and v.

The leading perturbative result is reproduced:

_ 15 2 2
h(X, X, 6) = WV (Dﬂ')

re_ 1 / - / A A(X, X, €) = — 212N / d*x (O )2.
i 182 € 12872
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The exponent of the heat-kernel is ( © = 7g + d7)
F = —Guk"k" — (1 —2v0nq)D(K) + 2v0,,0,mq LM (k)
+2v067 (k% + De(K)) + 2v0,0,6m (—k"K” + L (k))
with the “metric” G, = g, — 2v0ng gy + 2v0,,0, ¢ and
D.(k) = -2iVek"d, —eO

L'(k) = 2iyek"d" + ed"d".

Make the “metric” G,,,, trivial by rescaling k* = S* k', with
§4.G. S = Gpo-

The most divergent term quadratic in é in the heat kernel is

h(x,x,e) = /(Z”)( (de tS) 2(21/D<57r(8k)2

2
+200,0,6m (—Sk* sm) :
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On the background that realizes the Vainshtein mechanism

@ 1 224 4 > N s
= 128727 A /d X ((D57r) P(r?) — 2(067)(0,,0,0m) V*(r?)
+ (8u81/67r) (8p80(57r) Wl“’PO'(rZ)> .

with P(r?), V¥ (r?), Wrre (r?) ~ (r/ry)® and r, ~ (vc)'/3.
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(det S) (S",-)4 as a function of r with v = 1, ¢ = 10%. The solid, blue

line corresponds to i = 0, the dotted, red line to i = 1 and the dashed, green
linetoi =2 or3.
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The heat-kernel for the cubic Galileon takes the form

d*k 1 L a 5 )
h(x, x,¢€) = / e exp {—Gu k"k” + 2i\/€G, k" 0" + €G,, 0" 0" }
X = —Gu kik", Y =2i\/eG, k"D + G, 040"
XY =X (1-1YIX, Y] - 3X, Y]+ ...
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The general structure of the effective action is

rﬁz’ = yz/d4X

A ( G (57ra457r)>

v

2 e r7/2 . £9/2 :
+A“ | Cia ng/z (571'8 577) aF C1bFf9/2 (571‘8 571') 4 C1CR9/2 (57r6 571')
v
0md (577) + Cop—= ((57r85(5ﬂ')

+|og(A/u>(c2a . E

r2 3
+Coc— R3 (57r(9 57r) + Cog—= R3 (57r5‘7(57r) + Coe—= R‘?/ (57r3857r)>] .
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Conclusions
o

We repeat the same procedure for the Classicalon field.

S= /d4 ( Oumo!T + 14 (auﬂa”wf).

G = 9w <1 + gapﬂapw) + v0,m0, .

1

L1 (M
CTALA

h(x, x,¢) = 16 3 2detS
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The couplings of the Galileon theory do not get renormalized.
However, the Galileon theory is not stable under quantum
corrections. Additional terms are generated.

Quantum corrections are suppressed below the Vainshtein
radius.

The Classicalon model possibly shares the same properties.
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