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S =

∫
d4x

{
1
2

(∂π)2 − ν

2
(∂π)2�π

}
.

The cubic Galileon theory describes the dynamics of the scalar
mode that survives in the decoupling limit of the DGP model
(Dvali, Gabadadze, Porrati).
The action contains a higher-derivative term, cubic in the field
π(x), with a dimensionful coupling that sets the scale Λ at which
the theory becomes strongly coupled.
ν = 1/Λ3

Λ ∼ (m2MPl)
1/3 with m ∼ H ∼ M3

5/M
2
Pl
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The action is invariant under the Galilean transformation
π(x)→ π(x) + bµxµ + c, up to surface terms.
In the Galileon theory additional terms can also be present, but
the theory is ghost-free: EOM is second order (Nicolis, Rattazzi,
Trincherini).
Nonlinearities become important below the Vainshtein radius
rV ∼ (M/Λ3MPl)

1/3.
Does this contruction survive quantum corrections?
The DBI action S =

∫
d4xµ

√
1 + ∂µπ∂µπ corresponds to the

simplest term of a theory of embedded surfaces.
The effective theory of embedded surfaces can be used in order
to reproduce the Galileon theory at low energies (∂π)2 << 1 (de
Rham, Tolley).
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Outline

Classical solutions and Vainshtein mechanism.
Renormalization of the cubic Galileon theory, perturbative
background.
Heat-kernel method for nontrivial backgrounds.
Suppression of quantum corrections by the Vainshtein
mechanism.
Classicalon.
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Classical solution, Vainshtein mechanism

The classical EOM for cubic Galileon is

�π − 1
Λ3 (�π) +

1
Λ3 ∂µ∂νπ∂

µ∂νπ = T δ3(~x)

Spherically symmetric solution (w = r2)

π′cl (w) =
1

8ν

(
1−

√
1 +

16νc
w3/2

)
.

rV ∼ (cν)
1
3

For r � rv we have π ∼
√

c/ν
√

r .
For r � rv we have π ∼ c/r .
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Renormalization of the Galileon theory
Perturbative background.

S =

∫
d4x

{
1
2

(∂π)2−ν
2

(∂π)2�π+
κ̄

4
(∂π)2 ((�π)2 − (∂µ∂νπ)2)+...}.

If a momentum cutoff is used, of the order of the fundamental
scale Λ of the theory, and the couplings are taken of order Λ, the
one-loop effective action of the Galileon theory is, schematically,
(Luty, Porrati, Nicolis, Rattazzi)

Γ1 ∼
∫

d4x
∑

m

[
Λ4 + Λ2∂2 + ∂4 log

(
∂2

Λ2

)](
∂2π

Λ3

)m

.

Non-renormalization of the Galileon couplings (de Rham,
Gabadadze, Heisenberg, Pirtskhalava, Hinterbichler, Trodden,
Wesley).
Explicit one-loop calculation using dimensional regularization
(Paula Netto, Shapiro).
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One-loop corrections to the cubic Galileon
Tree-level action in Euclidean d-dimensional space

S =

∫
ddx

{
1
2

(∂π)2 − ν

2
(∂π)2�π

}
.

Field fluctuation δπ around the background π. The quadratic part
is

S(2) =

∫
ddx

{
−1

2
δπ�δπ +

ν

2
δπ [2(�π)�δπ − 2(∂µ∂νπ)∂µ∂νδπ]

}
.

Define

K = −� Σ1 = 2ν(�π)� Σ2 = −2ν(∂µ∂νπ) ∂µ∂ν

One-loop contribution to the effective action

Γ1 =
1
2

tr log (K + Σ1 + Σ2) =
1
2

tr log
(
1 + Σ1K−1 + Σ2K−1)+N .
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Expanding the logarithm up to O
(
ν2
)

we obtain

tr
(
Σ1K−1Σ1K−1) = 4ν2(2π)d

∫
ddk k4π̃(k)π̃(−k)

∫
ddp

(2π)d

tr
(
Σ1K−1Σ2K−1) = −4ν2(2π)d

∫
ddk k4π̃(k)π̃(−k)

1
d

∫
ddp

(2π)d

tr
(
Σ2K−1Σ2K−1) = 4ν2(2π)d

∫
ddk π̃(k)π̃(−k)

{
3

d(d + 2)
k4
∫

ddp
(2π)d

+
(d − 8)(d − 1)

d(d + 2)(d + 4)
k6
∫

ddp
(2π)d

1
p2

− (d − 24)(d − 2)(d − 1)

d(d + 2)(d + 4)(d + 6)
k8
∫

ddp
(2π)d

1
p4

}
.
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Putting everything together, we obtain in position space, the
one-loop correction to the effective action

Γ
(2)
1 = ν2

∫
ddx π(x)

{
− d2 − 1

d(d + 2)

(∫
ddp

(2π)d

)
�2

+
(d − 8)(d − 1)

d(d + 2)(d + 4)

(∫
ddp

(2π)d
1
p2

)
�3

+
(d − 24)(d − 2)(d − 1)

d(d + 2)(d + 4)(d + 6)

(∫
ddp

(2π)d
1
p4

)
�4

}
π(x).

The momentum integrals are defined with UV and IR cutoffs.
If dimensional regularization near d = 4 is used, the first two
terms are absent. The third one corresponds to a counterterm
∼ 1/ε (Paula Netto, Shapiro).
No corrections to the Galileon couplings.
Terms outside the Galileon theory are generated.
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Pertubation theory:

Γ1 ∼
∫

d4x
∑

m

[
Λ4 + Λ2∂2 + ∂4 log

(
∂2

Λ2

)] (
ν∂2π

)m
.

Split the field as π = πcl + δπ.
The action includes terms ∼ ν2Λ4(ν�πcl )

n(�δπ)2

But ν�πcl ∼ (rV/r)3/2 � 1 below the Vainshtein radius.
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Heat-kernel approach around a nontrivial background

Our task is to evaluate the one-loop effective action

Γ1 =
1
2

tr log ∆

with ∆ = −� + 2ν (�π)�− 2ν (∂µ∂νπ) ∂µ∂ν

around the background (w = r2)

π′cl (w) =
1

8ν

(
1−

√
1 +

16νc
w3/2

)
.

The propagation of classical fluctuations in suppressed below
the Vainshtein radius rV ∼ (νc)1/3, where ν�πcl ∼ (rV/r)3/2 � 1.
What about the quantum fluctuations?
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Calculate the heat kernel

h(x , x ′, ε) =

∫
d4k

(2π)4 e−ikx′
e−ε∆eikx

The one-loop effective action can be obtained as

Γ1 = −1
2

∫ ∞
1/Λ2

dε
ε

∫
d4x h(x , x , ε).

h(x , x , ε) =

∫
d4k

(2π)4ε2
e−k2

e
√
εX(k,∂)+εY (k,∂). (1)

Expand in powers of
√
ε. The result is the derivative expansion of

the effective action.
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The diagonal part of the heat kernel becomes

h(x , x , ε) =

∫
d4k

(2π)4
1
ε2

exp
{
−k2 + 2i

√
εkµ∂µ + ε�

+2ν�π
(
k2 − 2i

√
εkµ∂µ − ε�

)
−2ν∂µ∂νπ

(
kµkν − 2i

√
εkµ∂ν − ε∂µ∂ν

)}
Expand in ε and ν.
The leading perturbative result is reproduced:

h(x , x , ε) =
15

32π2ε2
ν2(�π)2

Γ
(2)
1 = −1

2

∫ ∞
1/Λ2

dε
ε

∫
d4x h(x , x , ε) = − 15

128π2 ν
2Λ4

∫
d4x (�π)2.
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Heat kernel
The exponent of the heat-kernel is ( π = πcl + δπ)

F = −Gµνkµkν − (1− 2ν�πcl )Dε(k) + 2ν∂µ∂νπcl Lµνε (k)

+2ν�δπ
(
k2 + Dε(k)

)
+ 2ν∂µ∂νδπ (−kµkν + Lµνε (k))

with the “metric” Gµν = gµν − 2ν�πcl gµν + 2ν∂µ∂νπcl and

Dε(k) = −2i
√
εkµ∂µ − ε�

Lµνε (k) = 2i
√
εkµ∂ν + ε∂µ∂ν .

Make the “metric” Gµν trivial by rescaling kµ = Sµνk ′ν , with

SµρGµνSνσ = gρσ.

The most divergent term quadratic in δπ in the heat kernel is

h(x , x , ε) =

∫
d4k

(2π)4 (det S)
1

2ε2
e−k2

(
2ν�δπ(Sk)2

+2ν∂µ∂νδπ (−SkµSkν)

)2

.
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On the background that realizes the Vainshtein mechanism

Γ
(2)
1 = − 1

128π2 ν
2Λ4

∫
d4x

(
(�δπ)2 P(r2)− 2(�δπ)(∂µ∂νδπ) Vµν(r2)

+ (∂µ∂νδπ) (∂ρ∂σδπ) Wµνρσ(r2)
)
.

with P(r2),Vµν(r2),Wµνρσ(r2) ∼ (r/rV )6 and rv ∼ (νc)1/3.
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Figure: (det S)
(
S i

i

)4
as a function of r with ν = 1, c = 106. The solid, blue

line corresponds to i = 0, the dotted, red line to i = 1 and the dashed, green
line to i = 2 or 3.
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Higher order in ε

The heat-kernel for the cubic Galileon takes the form

h(x , x , ε) =

∫
d4k

(2π)4
1
ε2

exp
{
−Gµνkµkν + 2i

√
εGµνkµ∂ν + εGµν∂

µ∂ν
}
,

X = −Gµνkµkν , Y = 2i
√
εGµνkµ∂ν + εGµν∂

µ∂ν .

eX+Y = eX
(
1− 1

2 Y [X ,Y ]− 1
2 [X ,Y ] + ...
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The general structure of the effective action is

Γ
(2)
1 = ν2

∫
d4x[

Λ4
(

c0
r6

R6
V

(
δπ∂4δπ

))

+Λ2

(
c1a

r5/2

R9/2
V

(
δπ∂4δπ

)
+ c1b

r7/2

R9/2
V

(
δπ∂5δπ

)
+ c1c

r9/2

R9/2
V

(
δπ∂6δπ

))

+ log(Λ/µ)

(
c2a

1
rR3

V

(
δπ∂4δπ

)
+ c2b

1
R3

V

(
δπ∂5δπ

)
+c2c

r
R3

V

(
δπ∂6δπ

)
+ c2d

r2

R3
V

(
δπ∂7δπ

)
+ c2e

r3

R3
V

(
δπ∂8δπ

))]
.
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Classicalon

We repeat the same procedure for the Classicalon field.

S =

∫
d4x

(
1
2
∂µπ∂

µπ +
1

Λ4 (∂µπ∂
µπ)2

)
.

Gµν = gµν
(

1 +
ν

2
∂ρπ∂

ρπ
)

+ ν∂µπ∂νπ.

rc =
1
Λ

(
M
Λ

) 1
2

h(x , x , ε) =
1

16π2ε2
detS
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Figure: (det S)
(
S i

i

)4
as a function of r with Λ = 1, rc = 30.
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Conclusions

The couplings of the Galileon theory do not get renormalized.
However, the Galileon theory is not stable under quantum
corrections. Additional terms are generated.
Quantum corrections are suppressed below the Vainshtein
radius.
The Classicalon model possibly shares the same properties.
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