Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions

WMAP Science Team

J. Berges

Universität Heidelberg

TU Vienna

ALICE/CERN

Lefkada, September 2014

Renormalization group fixed points

RG: 'microscope' with varying resolution of length scale

~ 1/k

Fixed point: physics looks the same for 'all' resolutions (in rescaled units)

 \rightarrow scaling form, e.g. anti-commutator expectation value:

$$F_k = \frac{1}{2} \langle \{\Phi, \Phi\} \rangle_k \sim \frac{1}{k^{2+\kappa}} \sum_{\kappa}$$

'occupation number' exponent

 \rightarrow similarly, spectral function (commutator, $\rho = G_R - G_A$):

$$ho_k \sim \langle [\Phi,\Phi]
angle_k \ \sim \ rac{1}{k^{2-\eta}}$$
 — anomalous dimension

Typically not for *all* resolutions:

- IR fixed point for $k \to 0$
- UV fixed point for $k \to `\infty`$

Thermal & nonthermal fixed points: Wetterich equation on the closed time path

Scale derivative
$$\dot{\Gamma}_{k}[\phi, \tilde{\phi}] \equiv k \frac{\partial \Gamma_{k}[\phi, \tilde{\phi}]}{\partial k}$$
 gives

$$\Rightarrow \qquad \dot{\Gamma}_{k}[\phi, \tilde{\phi}] = -\frac{i}{2} \operatorname{Tr} \left\{ G_{k}^{R} \dot{R}_{k}^{R} + G_{k}^{A} \dot{R}_{k}^{A} \right\} = -\frac{i}{2} \left\{ \begin{array}{c} \swarrow & & \\ & & \\ & & \\ & & \\ \end{array} \right\} + \begin{array}{c} \swarrow & \\ & & \\ & & \\ \end{array} \right\}$$
closed equation: $G_{k}^{R}[\phi, \tilde{\phi}] = -\left\{ \Gamma_{k}^{\tilde{\phi}\phi} + R_{k} - \Gamma_{k}^{\tilde{\phi}\phi} (\Gamma_{k}^{\phi\tilde{\phi}} + R_{k})^{-1} \Gamma_{k}^{\phi\phi} \right\}^{-1} [\phi, \tilde{\phi}]$

Flow interpolates between effective action (k = 0) and classical action ($k \rightarrow \Lambda$)

for:
$$R_{k,ab}^{R,A}(x,y) = R_k (-\Box_x) \delta(x-y) \delta_{ab}$$
 with $\lim_{k \to \Lambda} R_k \to \infty$

IR fixed point hierarchy

Berges, Hoffmeister, Nucl. Phys. B 813 (2009) 383 Hierarchy of infrared fixed point solutions ($\lambda \phi^4$):

> • vacuum: $\kappa = -\eta$ • thermal: $\kappa = -\eta + z$ • *nonequilibrium:* $\kappa = -\eta + z + d$, ...

Fluctuation-dissipation relation for vacuum/thermal equilibrium:

No fluctuation-dissipation relation out of equilibrium:

"
$$n(\omega, \mathbf{p})$$
"
 b spatial dimension *d* , ...

Applications: Nonthermal fixed points and turbulence

• Superfluid turbulence in a cold Bose gas

Self-similar dynamics of isolated systems

Self-similar time evolution: $n(t,p) = t^{\alpha} n_{s}(t^{\beta}p)$

stationary fixed-point distribution

E.g. O(N) symmetric scalar field theory with $\lambda \phi^4$ interaction:

Application to heavy-ion collisions

Particle production in the presence of large fields:

small initial (vacuum) fluctuations → *plasma instabilities!*

Mrowczynski; Rebhan, Romatschke, Strickland; Arnold, Moore, Yaffe ... Romatschke, Venugopalan; Berges, Scheffler, Schlichting, Sexty; Fukushima, Gelis; Wetterich, Flörchinger ...

Competition between interactions and expansion

Longitudinal Expansion:

- Red-shift of longitudinal momenta p_z
- \rightarrow increase of anisotropy
- Dilution of the system

Interactions:

Isotropize the system

 \rightarrow New universality class for expanding system?

Plasma instabilities at early times

CGC expanding (classical-statistical lattice simulations):

anisotrópy parameter

Nonthermal fixed point

Evolution in the `anisotropy-occupancy plane'

114007

(2014) 074011; ibid.

Bottom-up* scenario emerges as a consequence of the fixed point! *Baier et al, PLB 502 (2001) 51

Turbulent thermalization process

Extrapolation to realistic coupling $\alpha_s \sim 0.3$ for Q ~ 2 GeV:

τ _{inst} ~ 0.1 fm/c	τ _{quant} ~ 0.6 fm/c	τ _{therm} ~ 2 fm/c
P _L /P _T ~ 20-30%	P _L /P _T ~ 10-20%	$P_L \sim P_T$

Self-similar evolution

$$f(\mathbf{p}_{\mathrm{T}},\mathbf{p}_{\mathrm{z}},\tau) = (Q\tau)^{\alpha} f_{S} \Big((Q\tau)^{\beta} \mathbf{p}_{\mathrm{T}}, (Q\tau)^{\gamma} \mathbf{p}_{\mathrm{z}} \Big)$$

stationary fixed-point distribution

Comparing gauge and scalar field theories

Accurate agreement of scaling exponents and scaling function in characteristic momentum range : ($\lambda \phi^4$ with longitudinal expansion)

Berges, Boguslavski, Schlichting, Venugopalan, arXiv:1408.1670

Conclusions

- Nonthermal fixed points: Self-similar scaling solutions far from equilibrium (universality classes, `self-tuned´)
- Wide range of applications: Early Universe reheating, heavy-ion collisions, superfluid Bose gases, …

Nature of nonthermal fixed point: wave turbulence

Boltzmann equation with generic collision term for longitudinal expansion:

$$\left[\partial_t - \frac{p_z}{t}\partial_{p_z}\right]f(p_T, p_z, t) = C[p_T, p_z, t; f]$$

Self-similar evolution:

$$f(p_T, p_z, t) = t^{\alpha} f_S(t^{\beta} p_T, t^{\gamma} p_z)$$

$$C[p_T, p_z, t; f] = t^{\mu} C[t^{\beta} p_T, t^{\gamma} p_z; f_S]$$

 \rightarrow a) fixed point equation for stationary distribution:

 $\alpha f_S(p_T, p_z) + \beta p_T \partial_{p_T} f_S(p_T, p_z + (\gamma - 1) p_z \partial_{p_z} f_S(p_T, p_z) = C[p_T, p_z; f_S]$

 \rightarrow b) scaling condition:

$$\alpha - 1 = \mu(\alpha, \beta, \gamma)$$

Turbulent Thermalization

Nonthermal fixed point

Interpret scaling condition with **energy/number conserving*** Fokker-Planck-type dynamics for the collisional broadening of longitudinal momentum distribution:

$$C^{(\text{elast})}[p_T, p_z; f] = \hat{q} \ \partial_{p_z}^2 f(p_T, p_z, t)$$

with momentum diffusion parameter: $\hat{q} \sim \alpha_S^2 \int \frac{d^2 p_T}{(2\pi)^2} \int \frac{dp_z}{2\pi} f^2(p_T, p_z, t)$

*cf. early stages of Baier, Mueller, Schiff, Son, PLB 502 (2001) 51 ('BMSS')