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Motivations

@ Quantum field theory on curved background
@ Recent surge of interest on IR effects in dS spacetime [see Serreau’s talk]

@ Background dependence in FRG approach to asymptotically safe gravity:
9 gur = guv + hwj and AkS[g, h] = Iy = Fk[g;h}, mWI

@ Nonperturbative (in R) background effects in f(R) approximation

@ Usually we study asymptotic safety in Euclidean signature
= Euclidean QFT (= statistical field theory) on curved background

@ In condensed matter the effect of curvature can be of interest for a number of
reasons (e.g. for theoretical modeling of 3d frustration in simplified 2d models),
and it has been studied in the context of liquids, percolation, Ising model, XY
model, self-avoiding walks and more

This talk: How does curvature affect critical behavior in a simple model
and how do we see that with the FRGE
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Outline

@ Two simple backgrounds: d-dimensional spheres and hyperboloids
@ Effective dimension and general expectations

@ FRGE in the presence of background curvature
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The d-dimensional sphere

@ Homogeneous space: S¢ ~ SO(d +1)/50(d)
d+1
Z (XA)2 — a2
A=1
dsfsd) = a2dQy = a>d0> + a® sin® (04)dQa—1

@ Maximally symmetric:
R
Ruvpo = m(gwgw — GuoGup)

with positive curvature:

d(d—1)

a2

R=

@ Compact space = discrete spectrum, including a zero mode

n(n+d—1)
a2

—V ;= Vn,j

(n4+d—2)! (2n+d—1)

with multiplicity D,, = BT Ta— i=12,..Dyp,and n=0,1,2,... + ©

4
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The d-dimensional hyperboloid
@ Homogeneous space: H? ~ S0O(d,1)/50(d)
Z _ (X2 = _g?

ds?Hd) =dr® + a®sinh’*(r/a)dQ 1

@ Also maximally symmetric, but with negative curvature:

d(d—1)

2

R=-—
a

@ Non-compact space = continuous spectrum

1
~Viha = ()\ +0%) oA
where p = (d —1)/2, A € [0, + ),andl:0,1,2,...+oo

note: no zero mode (not normalizable)



Effective dimension

Hausdorff dimension:
LiH :/ddx\/g
L

where the integral extends over the set of points for which o(z,0) < L.

@ Sphere: dg — 0 for L — oo (~ it looks like a point from far)

@ Hyperboloid:  di — oo for L — oo (due to exponential growth e*)

Spectral dimension = same result
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Effective dimension

Hausdorff dimension:
LiH :/dda:\/g
L

where the integral extends over the set of points for which o(z,0) < L.

@ Sphere: dg — 0 for L — oo (~ it looks like a point from far)

@ Hyperboloid:  di — oo for L — oo (due to exponential growth e*)

Spectral dimension = same result

= We expect mean field behavior on hyperboloid, and no phase transition on sphere )

(We reach same expectations by using Ginzburg criterion for scalar field)



FRGE on curved background — (1)

@ LPA )
ruiel = [ a0 00,0+ 1h(6)|

® FRGE

_ 2 2
KOLVi(9) = 5 Tr (v { kO R (—V?/K?) ]

—ZkV2 + V'(¢) + Ri(=V?/k?)

| p=const.

@ Using the optimized cutoff and dimensionless variables

0L (8) + ATH(&) ~ T5ZIG) = e @)
k

where | Fiyp (@) = ﬁ(M)[Q(l —A)]|, and a=ak

= All the background dependence is in the spectral counting function Fr(a).
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FRGE on curved background — (lI)

@ In flat space, by Fourier transform:

Fen () = Toma = 6

@ Hyperboloid (d = 3):
1 1\? 1
Fi (0h) = 72 (1 B GW) ’ (1 - a2k2)

1
2m2a3k3

@ Sphere (d = 3):

Fiss)(ak) = P(LNs])

where |z is the floor function,

(14 N)(2+ N)(3+2N)

D=

P(N)=> D, =

N3:—1—|—\/1+a2k2

The spherical case gives rise to a staircase function, as a combined effect of the
discrete spectrum and the use of a step function in the cutoff
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Non-autonomous system

Fowy (@) = Trmy[0(1 — A)]
(]

@ Non-autonomous equation: explicit dependence on k via a = ak
No rescaling of variables can turn the equation into an autonomous one

= Non-trivial fixed points are unlikely (k-dependence should factorize in 3's)

@ Non-autonomous equations found also in:

quantum field theory at finite temperature [Tetradis, Wetterich - 93],
non-commutative spacetime [Gurau, Rosten - '09],

RG for matrix/tensor models [DB, BenGeloun, Oriti - to appear],

gravity, if we eliminate G (treating it as inessential parameter) [Percacci, Perini - '04]
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Scaling dimensions in the deep IR
Deep IR, &k — O:

@ Hyperboloid:  Fgay(a@) — 0 (due to mass gap)

For ak < (d —1)/2 (due to optimized cutoff)
o d=2 ), -

= classical scaling equation
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Scaling dimensions in the deep IR
Deep IR, &k — O:

@ Hyperboloid:  Fay(@) — 0 (due to mass gap)
For ak < (d —1)/2 (due to optimized cutoff)
KOLTA(B) + dVA(6) — L526T(3) =0
= classical scaling equation
® Sphere:  F(ga)(@) — 00 (due to zero mode, and compactness)

In order to absorb divergence of FRGE:
¢=a"k¢, V(o) =a'V(e k"9
The resulting equation for k? < d/a?

1 1

kORVi(9) + OVi(d) = o= = T+ V()

= flat FRG equation for d = 0

10/15



Numerical integration — Flat space

@ Solve numerically the flow equation, and integrating towards k = 0 observe
different behavior as function of initial condition

@ Blue curve: initial condition Va(¢) = Aa(¢® — pa)?
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Numerical integration — Sphere

Vk(4)

Despite the large value of the initial symmetry breaking parameter (here pp = 25),
symmetry restoration still takes place.

No true phase transition!
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Numerical integration — Hyperboloid

Phase transition is there:

Note: no zero mode = convexity of I' does not imply convexity of the potential
Convexity of the effective action: all the eigenvalues of I'® [#] are non-negative
If p?2 =0 is in the spectrum = V" (¢) > 0 (because I'?[§] = V" (¢) at p* = 0)

In hyperbolic space the smallest eigenvalue of the Laplacian is 1o = p%/a® > 0 (with
eigenfunction @o,;) = TP (@] - w01 # V" () - ¢ou

In agreement with the mean field approximation, in which the potential in the broken

phase is not convex
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No nontrivial fixed points

A simple truncation

Vi($) = vo(k) + va(k) ¢ + va(k) ¢

4
r -
k&kvz = -2 Vo2 — 12 V4 %
2
r -
kOgvs = (d — 4) va + 14403 %
4
Ok — kBt — 07 . 4-d . 12(d—4)
ko2 = RORL =07 = 0 = 50 T o 160 P (@)

Hyperboloid: v} — oo for k — 0
= only Gaussian fixed point = mean field exponents
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Conclusions

Strong IR effects produce very different physics on spheres and hyperboloids

@ We have in these cases some general arguments (effective dimensionality,
Ginzburg criterion) to give us some indications on what to expect

@ FRGE can be used to nicely derive such properties

@ Many possible calculations and extensions possible (7, large-N, other spaces...)

@ Open question: can critical behavior be modified in a less trivial way by the
background? (i.e. not explainable in terms of effective dimension)
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