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Motivations

Quantum field theory on curved background

Recent surge of interest on IR effects in dS spacetime [see Serreau’s talk]

Background dependence in FRG approach to asymptotically safe gravity:

gµν = ḡµν + hµν and ∆kS[ḡ; h] ⇒ Γk = Γk[ḡ;h], mWI

Nonperturbative (in R̄) background effects in f(R) approximation

Usually we study asymptotic safety in Euclidean signature
⇒ Euclidean QFT (≡ statistical field theory) on curved background

In condensed matter the effect of curvature can be of interest for a number of
reasons (e.g. for theoretical modeling of 3d frustration in simplified 2d models),
and it has been studied in the context of liquids, percolation, Ising model, XY
model, self-avoiding walks and more

This talk: How does curvature affect critical behavior in a simple model
and how do we see that with the FRGE
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Outline

Two simple backgrounds: d-dimensional spheres and hyperboloids

Effective dimension and general expectations

FRGE in the presence of background curvature
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The d-dimensional sphere

Homogeneous space: Sd ≃ SO(d+ 1)/SO(d)

d+1∑

A=1

(XA)2 = a2

ds2(Sd) = a2dΩd = a2dθ2d + a2 sin2(θd)dΩd−1

Maximally symmetric:

Rµνρσ =
R

d(d− 1)
(gµρgνσ − gµσgνρ)

with positive curvature:

R =
d(d− 1)

a2

Compact space ⇒ discrete spectrum, including a zero mode

−∇2 ψn,j =
n(n+ d− 1)

a2
ψn,j

with multiplicity Dn = (n+d−2)! (2n+d−1)
n!(d−1)!

, j = 1, 2, ...Dn, and n = 0, 1, 2, ...+∞
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The d-dimensional hyperboloid

Homogeneous space: Hd ≃ SO(d, 1)/SO(d)

d∑

A=1

(XA)2 − (Xd+1)2 = −a2

ds2(Hd) = dτ 2 + a2 sinh2(τ/a)dΩd−1

Also maximally symmetric, but with negative curvature:

R = −d(d− 1)

a2

Non-compact space ⇒ continuous spectrum

−∇2φλ,l =
1

a2
(λ2 + ρ2)ϕλ,l

where ρ = (d− 1)/2, λ ∈ [0,+∞), and l = 0, 1, 2, ...+∞

note: no zero mode (not normalizable)
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Effective dimension

Hausdorff dimension:

LdH =

∫

L

ddx
√
g

where the integral extends over the set of points for which σ(x, 0) ≤ L.

Sphere: dH → 0 for L→ ∞ (∼ it looks like a point from far)

Hyperboloid: dH → ∞ for L→ ∞ (due to exponential growth eL)

Spectral dimension ⇒ same result
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Effective dimension

Hausdorff dimension:

LdH =

∫

L

ddx
√
g

where the integral extends over the set of points for which σ(x, 0) ≤ L.

Sphere: dH → 0 for L→ ∞ (∼ it looks like a point from far)

Hyperboloid: dH → ∞ for L→ ∞ (due to exponential growth eL)

Spectral dimension ⇒ same result

⇒ We expect mean field behavior on hyperboloid, and no phase transition on sphere

(We reach same expectations by using Ginzburg criterion for scalar field)
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FRGE on curved background – (I)

LPA

Γk[φ] =

∫
ddx

√
g

[
1

2
gµν∂µφ∂νφ+ Vk(φ)

]

FRGE

k∂kVk(φ) =
1

2
Tr(M)

[
k∂kRk(−∇2/k2)

−Zk∇2 + V ′′
k (φ) +Rk(−∇2/k2)

]

|φ=const.

Using the optimized cutoff and dimensionless variables

k∂kṼk(φ̃) + d Ṽk(φ̃)−
d− 2

2
φ̃Ṽ ′

k(φ̃) =
1

1 + Ṽ ′′
k (φ̃)

F(M)(ã)

where F(M)(ã) = T̃r(M)[θ(1− ∆̃)] , and ã = ak

⇒ All the background dependence is in the spectral counting function F(M)(ã).
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FRGE on curved background – (II)

In flat space, by Fourier transform:

F(E3)(∞) =
Ωd−1

d (2π)d
−−→
d=3

1

6π2

Hyperboloid (d = 3):

F(H3)(ak) =
1

6π2

(
1− 1

a2k2

) 3

2

θ

(
1− 1

a2k2

)

Sphere (d = 3):

F(S3)(ak) =
1

2π2a3k3
P(⌊N3⌋)

where ⌊x⌋ is the floor function,

P(N) =
N∑

n=0

Dn =
1

6
(1 +N)(2 +N)(3 + 2N)

N3 = −1 +
√

1 + a2k2

The spherical case gives rise to a staircase function, as a combined effect of the
discrete spectrum and the use of a step function in the cutoff
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Non-autonomous system

F(M)(ã) = T̃r(M)[θ(1− ∆̃)]

⇓

Non-autonomous equation: explicit dependence on k via ã = ak

No rescaling of variables can turn the equation into an autonomous one

⇒ Non-trivial fixed points are unlikely (k-dependence should factorize in β’s)

Non-autonomous equations found also in:

quantum field theory at finite temperature [Tetradis, Wetterich - ’93],
non-commutative spacetime [Gurau, Rosten - ’09],
RG for matrix/tensor models [DB, BenGeloun, Oriti - to appear],
gravity, if we eliminate G (treating it as inessential parameter) [Percacci, Perini - ’04]
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Scaling dimensions in the deep IR

Deep IR, k → 0:

Hyperboloid: F(Hd)(ã) → 0 (due to mass gap)

For ak < (d− 1)/2 (due to optimized cutoff)

k∂kṼk(φ̃) + d Ṽk(φ̃)−
d− 2

2
φ̃Ṽ ′

k(φ̃) = 0

≡ classical scaling equation
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Scaling dimensions in the deep IR

Deep IR, k → 0:

Hyperboloid: F(Hd)(ã) → 0 (due to mass gap)

For ak < (d− 1)/2 (due to optimized cutoff)

k∂kṼk(φ̃) + d Ṽk(φ̃)−
d− 2

2
φ̃Ṽ ′

k(φ̃) = 0

≡ classical scaling equation

Sphere: F(Sd)(ã) → ∞ (due to zero mode, and compactness)

In order to absorb divergence of FRGE:

φ̄ = ad/2k φ , V̄ (φ̄) = adV (a−d/2k−1φ̄)

The resulting equation for k2 < d/a2 is

k∂kV̄k(φ̄) + φ̄V̄ ′
k(φ̄) =

1

Ωd

1

1 + V̄ ′′
k (φ̄)

≡ flat FRG equation for d = 0
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Numerical integration – Flat space
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Solve numerically the flow equation, and integrating towards k = 0 observe
different behavior as function of initial condition

Blue curve: initial condition VΛ(φ) = λΛ(φ
2 − ρΛ)

2
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Numerical integration – Sphere
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Despite the large value of the initial symmetry breaking parameter (here ρΛ = 25),
symmetry restoration still takes place.

No true phase transition!
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Numerical integration – Hyperboloid

Phase transition is there:
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Note: no zero mode ⇒ convexity of Γ does not imply convexity of the potential

Convexity of the effective action: all the eigenvalues of Γ(2)[φ̄] are non-negative

If p2 = 0 is in the spectrum ⇒ V ′′(φ̄) ≥ 0 (because Γ(2)[φ̄] = V ′′(φ̄) at p2 = 0)

In hyperbolic space the smallest eigenvalue of the Laplacian is ν0 = ρ2/a2 > 0 (with
eigenfunction ϕ0,l) ⇒ Γ(2)[φ̄] · ϕ0,l 6= V ′′(φ̄) · ϕ0,l

In agreement with the mean field approximation, in which the potential in the broken
phase is not convex
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No nontrivial fixed points

A simple truncation
Ṽk(φ̃) = v0(k) + v2(k) φ̃

2 + v4(k) φ̃
4

⇓

k∂kv2 = −2 v2 − 12 v4
F(M)(ã)

(1 + 2 v2)2

k∂kv4 = (d− 4) v4 + 144 v24
F(M)(ã)

(1 + 2 v2)3

⇓

k∂kv
∗
2 = k∂kv

∗
4 = 0 ? ⇒ v∗2 =

4− d

2d− 32
, v∗4 =

12(d− 4)

(d− 16)3F(M)(ã)

Hyperboloid: v∗4 → ∞ for k → 0
⇒ only Gaussian fixed point ⇒ mean field exponents
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Conclusions

Strong IR effects produce very different physics on spheres and hyperboloids

We have in these cases some general arguments (effective dimensionality,
Ginzburg criterion) to give us some indications on what to expect

FRGE can be used to nicely derive such properties

Many possible calculations and extensions possible (η, large-N , other spaces...)

Open question: can critical behavior be modified in a less trivial way by the
background? (i.e. not explainable in terms of effective dimension)
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