do interacting UV fixed points exist fundamentally, and if so: what can we do with them?

Daniel F Litim US University of Sussex

7th International Conference on the Exact Renormalization Group

standard model

local QFT for fundamental interactions

strong nuclear force weak force electromagnetic force

degrees of freedom

spin 0 (the Higgs has finally arrived) spin 1/2 (quite a few) spin 1

perturbatively renormalisable & predictive

7th International Conference on the Exact Renormalization Group

standard model

local QFT for fundamental interactions

strong nuclear force weak force electromagnetic force

challenges

Higgs, QED: maximum UV extension? how does quantum gravity fit in?

interacting UV fixed points

Friday, 26 September 14

ERG2014

UV fixed points

7th International Conference on the Exact Renormalization Group

perturbation theory

theory with coupling α :

 $t = \ln \mu / \Lambda$

7th International Conference on the Exact Renormalization Group

perturbation theory

theory with coupling α :

 $t = \ln \mu / \Lambda$

predictive up to maximal UV extension

7th International Conference on the Exact Renormalization Group

Friday, 26 September 14

ERG2014

asymptotic freedom

theory with coupling α :

 $t = \ln \mu / \Lambda$

Wilson '71

theory with coupling α :

 $t = \ln \mu / \Lambda$

$\partial_t \alpha = A \alpha - B \alpha^2$ $\alpha_* \ll 1$ perturbative non-renormalisability: A > 0

7th International Conference on the Exact Renormalization Group

theory with coupling α :

7th International Conference on the Exact Renormalization Group

 $t = \ln \mu / \Lambda$

theory with coupling α :

7th International Conference on the Exact Renormalization Group

 $t = \ln \mu / \Lambda$

theory with coupling α :

epsilon expansion: $\epsilon = D - D_c$ large-N expansion:many fields

7th International Conference on the Exact Renormalization Group

 $t = \ln \mu / \Lambda$

Friday, 26 September 14

ERG2014

perturbation theory

theory with coupling α :

$$t = \ln \mu / \Lambda$$

$$\partial_t \alpha = A \, \alpha - B \, \alpha^2 \qquad \qquad \alpha_* \ll 1$$

gravitons	$D = 2 + \epsilon :$	$\alpha = G_N(\mu)\mu^{D-2}$	Gastmans et al '78 Weinberg '79 Kawai et al '90
fermions	$D = 2 + \epsilon :$	$\alpha = g_{\rm GN}(\mu)\mu^{2-D}$	Gawedzki, Kupiainen '85 de Calan et al '91
gluons	$D = 4 + \epsilon :$	$\alpha = g_{\rm YM}^2(\mu)\mu^{4-D}$	Peskin '80 Morris '04
h la proventie and the second discussion of the state of the second last	ουν και το που ζουν καταγγαστοδιατορογιατική μουδιάστασβαγικάς βαγγαριατικός του πουτάπους πουτάπους πουτάπους Το ποιοτογία		

non-perturbative renormalisability

$$A = \epsilon \ll 1, \quad B = \mathcal{O}(1) > 0$$

7th International Conference on the Exact Renormalization Group

Friday, 26 September 14

ERG2014

exact interacting UV fixed points in 4D quantum gauge theories

with F Sannino 1406.2337

7th International Conference on the Exact Renormalization Group

SU(NC) YM with NF fermions:

$$\alpha_g = \frac{g^2 N_c}{(4\pi)^2}$$

 $t = \ln \mu / \Lambda$

 $\alpha_* \ll 1$

7th International Conference on the Exact Renormalization Group

SU(NC) YM with NF fermions:

$$\alpha_g = \frac{g^2 N_c}{(4\pi)^2}$$

 $t = \ln \mu / \Lambda$

 $\alpha_* \ll 1$

large-NF,NC (Veneziano) limit: ϵ continuous

7th International Conference on the Exact Renormalization Group

SU(NC) YM with NF fermions:

 $t = \ln \mu / \Lambda$

 $\alpha_* \ll 1$

interacting fixed points:

$$B < 0 \& C < 0$$
: UV fixed point no asymptotic freedom

 $\alpha_g = \frac{g^2 N_c}{(4\pi)^2}$

B > 0 & C > 0: Caswell-Banks-Zaks IR fixed point

7th International Conference on the Exact Renormalization Group

SU(NC) YM with NF fermions:

$$\alpha_g = \frac{g^2 N_c}{(4\pi)^2}$$

 $t = \ln \mu / \Lambda$

 $\alpha_* \ll 1$

7th International Conference on the Exact Renormalization Group

SU(NC) YM with NF fermions:

$$\alpha_g = \frac{g^2 N_c}{(4\pi)^2}$$

 $t = \ln \mu / \Lambda$

 $\alpha_* \ll 1$

7th International Conference on the Exact Renormalization Group

gauge-Yukawa theory

Lagrangean

$$L_{YM} = -\frac{1}{2} \operatorname{Tr} F^{\mu\nu} F_{\mu\nu}$$

$$L_F = \operatorname{Tr} \left(\overline{Q} \ i \not D \ Q \right)$$

$$L_Y = y \operatorname{Tr} \left(\overline{Q} \ H \ Q \right)$$

$$L_H = \operatorname{Tr} \left(\partial_{\mu} H^{\dagger} \ \partial^{\mu} H \right)$$

$$L_U = -u \operatorname{Tr} \left(H^{\dagger} H \right)^2$$

$$L_V = -v \left(\operatorname{Tr} H^{\dagger} H \right)^2.$$

small parameter

couplings $\alpha_g = \frac{g^2 N_C}{(4\pi)^2}, \quad \alpha_y = \frac{y^2 N_C}{(4\pi)^2}$ $\alpha_h = \frac{u N_F}{(4\pi)^2}, \quad \alpha_v = \frac{v N_F^2}{(4\pi)^2}.$

no asymptotic freedom

$$0 < \epsilon \ll 1 \qquad \epsilon = \frac{N_f}{N_c} - \frac{11}{2}$$

ERG2014

7th International Conference on the Exact Renormalization Group

gauge-Yukawa theory

$$\beta_g = \alpha_g^2 \left\{ \frac{4}{3} \epsilon + \left(25 + \frac{26}{3} \epsilon \right) \alpha_g - 2 \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right\}$$
$$\beta_y = \alpha_y \left\{ (13 + 2\epsilon) \alpha_y - 6 \alpha_g \right\}.$$
$$\beta_h = -(11 + 2\epsilon) \alpha_y^2 + 4\alpha_h (\alpha_y + 2\alpha_h)$$
$$\beta_v = 12\alpha_h^2 + 4\alpha_v (\alpha_v + 4\alpha_h + \alpha_y).$$

7th International Conference on the Exact Renormalization Group

gauge-Yukawa theory

$$\beta_g = \alpha_g^2 \left\{ \frac{4}{3} \epsilon + \left(25 + \frac{26}{3} \epsilon \right) \alpha_g - 2 \left(\frac{11}{2} + \epsilon \right)^2 \alpha_y \right\}$$

$$\beta_y = \alpha_y \left\{ (13 + 2\epsilon) \alpha_y - 6 \alpha_g \right\}.$$

$$\beta_h = -(11 + 2\epsilon) \alpha_y^2 + 4\alpha_h (\alpha_y + 2\alpha_h)$$

$$\beta_v = 12\alpha_h^2 + 4\alpha_v (\alpha_v + 4\alpha_h + \alpha_y).$$

7th International Conference on the Exact Renormalization Group

NLO NNLO NNNLO

$\begin{aligned} \alpha_g^* &= 0.4561 \,\epsilon + 0.7808 \,\epsilon^2 + \mathcal{O}(\epsilon^3) \\ \alpha_y^* &= 0.2105 \,\epsilon + 0.5082 \,\epsilon^2 + \mathcal{O}(\epsilon^3) \\ \alpha_h^* &= 0.1998 \,\epsilon + 0.5042 \,\epsilon^2 + \mathcal{O}(\epsilon^3) \,. \end{aligned}$

vacuum stability

UV fixed point

$$\alpha_h^* + \alpha_{v2}^* < 0 < \alpha_h^* + \alpha_{v1}^*$$

coupling	order in perturbation theory		
α_g	1	2	3
$lpha_{m{y}}$	0	1	2
$lpha_h$	0	0	1
$lpha_v$	0	0	1
approximation level	LO	NLO	NNLO

7th International Conference on the Exact Renormalization Group

Friday, 26 September 14

ERG2014

ERG2014

7th International Conference on the Exact Renormalization Group

7th International Conference on the Exact Renormalization Group

Friday, 26 September 14

ERG2014

ERG2014

7th International Conference on the Exact Renormalization Group

7th International Conference on the Exact Renormalization Group

Friday, 26 September 14

ERG2014

7th International Conference on the Exact Renormalization Group

asymptotic safety at small epsilon unitarity

non-triviality and elementary scalars

asymptotic safety at large epsilon

7th International Conference on the Exact Renormalization Group

what can we do with it?

interacting UV fixed points in 4D

cooperation decisive

generic, largely independent of gauge group, representation & gauge charges

exploit ideas from AdS/CFT & holography

Seiberg duality - without supersymmetry?

7th International Conference on the Exact Renormalization Group

what can we do with it?

interacting UV fixed points in 4D

UV-complete extensions of the Standard Model

applicable for finite N e.g. (NC,NF) = (5,28)

new handle on (i) hierarchy problem (ii) (non-)triviality of scalar sector in 4D scalars elementary

7th International Conference on the Exact Renormalization Group

what can we do with it?

interacting UV fixed points in 4D

UV-complete extensions of the Standard Model

helps with canonical quantisation of gravity

conformal matter + conformal mode ('t Hooft) asymptotically safe gravity with matter

7th International Conference on the Exact Renormalization Group

UV fixed points in 4D quantum gravity

with K Falls, DL, K Nikolakopoulos & C Rahmede 1301.4191 and forthcoming

evidence for UV fixed point

overviews: DL 0810.3675 and 1102.4624

gravitation

Einstein-Hilbert (Souma '99, Reuter, Lauscher '01, DL '03)

higher dimensions, dimensional reduction (DL '03, Fischer, DL '05)

 f(R), polynomials in R
 (Lauscher, Reuter, '02, Codello, Percacci, Rahmede '08, Machado, Saueressig '09 Benedetti, Caravelli'12, Dietz, Morris'12, Falls, DL, Nikolakopoulos, Rahmede '13)
 Iocal potential approximation
 Benedetti, Caravelli'12, Dietz, Morris, '12, Demmel, Saueressig, Zanusso '12, Falls, DL, Nikolakopoulos, Rahmede '13, Benedetti '13, Benedetti, Guarnieri '13)
 (Codello, Percacci '05)
 (Benedetti, Saueressig, Machado '09, Niedermaier '09)
 (DL, Rahmede, in prep.)
 (Reuter, Weyer '09, Machado, Percacci '10, DL, Satz '12)
 Holst action + Immirzi parameter (Daum, Reuter '10, Benedetti, Speciale '11)

signature effects (Manrique, Rechenberger, Saueressig 'II)

gravitation + matter

matter

(Percacci '05, Perini, Percacci '05, Narain, Percacci '09, Narain, Rahmede '09, Codello '11, Eichhorn et al '13)

Yang-Mills gravity

1-IOOP: (Robinson, Wilzcek '05, Pietrokowski, '06, Toms '07, Ebett, Plefka, Rodigast '08)

beyond: (Manrique, Reuter, Saueressig '09, Folkerts, DL, Pawlowski, 11, Harst, Reuter '11)

quantum gravity

running coupling $g(k) = G_N(k)k^{D-2}$

 $\partial_t g = (D - 2 + \eta_N) g$ $t = \ln k / \Lambda_c$ $q_* \neq 0$ $g_* = 0$ fixed points IR **large anomalous dimension** $\eta_N = \eta_N(g, \text{all other couplings})$ $\vartheta \approx \mathcal{O}(1)$ large UV scaling exponents $g_* \approx \mathcal{O}(1)$ strong coupling effects relevant vs irrelevant

invariants not known a priori

$$g_{*} = 0$$

anomalous dimensions

 $\eta_A = 0$

canonical power counting

 $\{\vartheta_{\mathrm{G},n}\}$ are known

$$g_* \neq 0$$

anomalous dimensions

 $\eta_N \neq 0$

non-canonical power counting

 $\{\vartheta_n\}$

are <mark>not</mark> known

 R^{256}

bootstrap

hypothesis ordering follows canonical dimension

strategy

- Step 1retain invariants up to mass dimension D
- **Step 2 compute** $\{\vartheta_n\}$ (eg. RG, lattice, holography)
- **Step 3** enhance D, and iterate

convergence (no convergence) of the iteration:

hypothesis supported (refuted)

$$\mathbf{f(R)} \qquad \Gamma_k \propto f(R)$$

$$\Gamma_k = \sum_{n=0}^{N-1} \lambda_n \, k^{d_n} \, \int d^4 x \sqrt{g} \, R^n$$

invariants up to D = 2(N-1)

functional renormalisation:

$$k\frac{\mathrm{d}\Gamma_{k}}{\mathrm{d}k} = \frac{1}{2} \operatorname{Tr} \left[\left(\frac{\delta^{2}\Gamma_{k}[\phi]}{\delta\phi\,\delta\phi} + R_{k} \right)^{-1} k\frac{\mathrm{d}R_{k}}{\mathrm{d}k} \right] = \frac{1}{2} \tag{S}$$
here: MReuter hep-th/9605030 Falls, DL, Nikolakopoulos, Rahmede 1301.4191.pdf
DL hep-th/0103195 hep-th/0312114 A Codello, R Percacci, C Rahmede 0705.1769, 0805.2909 P Machado, F Saueressig 0712.0445

f(R)

recursive solution

$$\lambda_n(\lambda_0,\lambda_1) = \frac{P_n(\lambda_0,\lambda_1)}{Q_n(\lambda_0,\lambda_1)}$$

boundary condition

$$\lambda_N = 0 \quad \& \quad \lambda_{N+1} = 0$$

polynomials grow large, eg.

 $P_{35} \approx 45.000$ terms

f(R)

35

bootstrap test

near-Gaussian

f(Ricci)

$$\Gamma_k \propto \int d^d x \sqrt{g} \left[f_k(R_{\mu\nu}R^{\mu\nu}) + R \cdot z_k(R_{\mu\nu}R^{\mu\nu}) \right]$$

$$\begin{split} \partial_{t}\Gamma[\bar{g},\bar{g}] &= \frac{1}{2}\mathrm{Tr}_{(2T)}\left[\frac{\partial_{t}\mathcal{R}_{k}^{h^{T}h^{T}}}{\Gamma_{h^{T}h^{T}}^{(2)}}\right] + \frac{1}{2}\mathrm{Tr}_{(1T)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\xi\xi}}{\Gamma_{\xi\xi}^{(2)}}\right] + \frac{1}{2}\mathrm{Tr}_{(0)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\sigma\sigma}}{\Gamma_{\sigma\sigma}^{(2)}}\right] + \frac{1}{2}\mathrm{Tr}_{(0)}\left[\frac{\partial_{t}\mathcal{R}_{k}^{hh}}{\Gamma_{hh}^{(2)}}\right] \\ &+ \mathrm{Tr}_{(0)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\sigmah}}{\Gamma_{\sigmah}^{(2)}}\right] - \mathrm{Tr}_{(1T)}\left[\frac{\partial_{t}\mathcal{R}_{k}^{\bar{C}^{T}C^{T}}}{\Gamma_{\bar{C}^{T}C^{T}}^{(2)}}\right] - \mathrm{Tr}_{(0)'}\left[\frac{\partial_{t}\mathcal{R}_{k}^{\bar{\eta}\eta}}{\Gamma_{\bar{\eta}\eta}^{(2)}}\right] - \mathrm{Tr}_{(0)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\bar{\lambda}\lambda}}{\Gamma_{\bar{\lambda}\lambda}^{(2)}}\right] \\ &+ \frac{1}{2}\mathrm{Tr}_{(0)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\omega\omega}}{\Gamma_{\omega\omega}^{(2)}}\right] - \mathrm{Tr}_{(1T)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\bar{c}^{T}c^{T}}}{\Gamma_{\bar{C}^{T}C^{T}}^{(2)}}\right] + \frac{1}{2}\mathrm{Tr}_{(1T)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\zeta^{T}\zeta^{T}}}{\Gamma_{\zeta^{T}\zeta^{T}}^{(2)}}\right] + \mathrm{Tr}_{(0)}'\left[\frac{\partial_{t}\mathcal{R}_{k}^{\bar{\lambda}\lambda}}{\Gamma_{\bar{\lambda}\lambda}^{(2)}}\right] \end{split}$$

K Falls, DL, K Nikolakopoulos & C Rahmede, (to appear)

f(Ricci)

K Falls, DL, K Nikolakopoulos & C Rahmede, (to appear)

$$\Gamma_k \propto \int d^d x \sqrt{g} \left[f_k(R_{\mu\nu}R^{\mu\nu}) + R \cdot z_k(R_{\mu\nu}R^{\mu\nu}) \right]$$

bootstrap test

K Falls, DL, K Nikolakopoulos, C Rahmede (to appear, 2014)

UV fixed points and black hole thermodynamics

with K Falls, K Nikolakopoulos & A Raghuraman 1002.0260 (IJMPA) 1212.1821 (PRD) 1308.5630 (JHEP)

black hole thermodynamics

entropy = horizon area temperature = surface gravity

Bekenstein '73 Bardeen, Carter, Hawking '73 Gibbons, Hawking '77

Jacobson '95

black hole thermodynamics

input: saddle point of effective action

Gibbons, Hawking '77

$$S \approx \int d^4x \sqrt{-\det g_{\mu\nu}} \left[\frac{1}{8\pi G_0} R + \frac{1}{4\alpha_0} F^{\mu\nu} F_{\mu\nu} \right] + S_m$$

central building block

IR limit
$$G_0 \approx 6.674 \times 10^{-11} \ \mathrm{N} \ (\mathrm{m/kg})^2$$

 $\alpha_0 \approx 1/137$

renormalisation group

new input: scale-dependent effective action

Falls & DL, 1212.8121 (PRD)

Λ

$$\Gamma_k \approx \int d^4x \sqrt{-\det g_{\mu\nu}} \left[\frac{1}{8\pi G_k} R + \frac{1}{4\alpha_k} F^{\mu\nu} F_{\mu\nu} \right] + S_m$$
running couplings

family of Kerr-Newman BH solutions

$$A = A(M, J, q; \mathbf{k}) \qquad \qquad S = \frac{A}{4G_{\mathbf{k}}}$$

choice of RG scale

determined by physical parameters of the BH: $k = k_{
m opt}(M, J, q)$

renormalisation group

Bekenstein's thought experiment

infinitesimal amount of matter crossing the horizon, with heat flow

$$\frac{\delta Q}{T} = \frac{\delta A}{4G_k}$$

BH settles in a new state

$$M \to M + \delta M \quad J \to J + \delta J$$
$$q \to q + \delta q \quad k_{\text{opt}} \to k_{\text{opt}} + \delta k_{\text{opt}}$$

total change of horizon area

$$\left(1 - \frac{2\pi}{\kappa}T\right)\delta A = \left.\frac{\partial A(M, J, q; k)}{\partial \ln k}\right|_{k=k_{\text{opt}}} \frac{\delta k_{\text{opt}}}{k_{\text{opt}}}$$

renormalisation group

results

RG scale
$$k_{opt}^2(M, J, q) \equiv k_{opt}^2(A) = \frac{4\pi\xi^2}{A}$$

ion
$$M^2 \equiv \frac{4\pi}{A} \left[\left(\frac{A + 4\pi G(A)e^2(A)q^2}{8\pi G(A)} \right)^2 + J^2 \right]$$

state function

$$T = 4G(A) \,\frac{\partial M}{\partial A}$$

entropy
$$S = rac{A}{4G_k}$$
 with $k = k_{\mathrm{opt}}$

asymptotic safety

Aharony, Banks '98, Shomer '07

$$S \sim (RT)^{d-1}, \quad E \sim R^{d-1}T^d$$

$$S \sim E^{\nu}$$
 $\rightarrow E^{r} = \frac{d-1}{d}$

Schwarzschild BH scaling

conformal scaling in QFT

$$S \sim R^{d-2}/G_N$$
 $E \sim R^{d-3}/G_N$

$$S \sim E^{\nu}$$

$$\nu_{\rm BH} = \frac{d-2}{d-3}$$

Aharony, Banks '98, Shomer '07

conformal scaling in QFT
$$S \sim (RT)^{d-1}, \quad E \sim R^{d-1}T^d$$

$$S \sim E^{\nu}$$
 $\rightarrow E^{r} = \frac{d-1}{d}$

Schwarzschild BH scaling

$$S \sim R^{d-2}/G_N \qquad E \sim R^{d-3}/G_N$$

$$S \sim E^{\nu}$$

 $\nu_{\rm BH} \neq \nu_{\rm CFT}$

$$\nu_{\rm BH} = \frac{d-2}{d-3}$$

except for
$$d = \frac{3}{2}$$

Falls, Litim '12

Schwarzschild BH scaling

 $S \sim R^{d-2}/G_N \quad E \sim R^{d-3}/G_N$

Falls, Litim '12

Schwarzschild BH scaling

 $S \sim R^{d-2}/G_N \quad E \sim R^{d-3}/G_N$

asymptotic safety

prediction II: conformal scaling from AS black holes

asymptotic safety

prediction III: entropy

thermodynamical
$$S = \frac{A}{4G(A)} = \frac{A}{4G_N} + \frac{\pi}{g_*}$$

Clausius' entropy

$$S = \int \frac{dA}{4G(A)} = \frac{A}{4G_N} + \frac{\pi}{g_*} \left(1 + \ln\frac{A}{A_c}\right)$$

statistical entropy

$$F = M - ST$$

valid for all RG scales

[using "off-shell" conical singularity method] (Soludkhin '96)

 UV fixed points offer maximal predictivity for QFTs including gravity, no artificial UV cutoff

 UV fixed points offer maximal predictivity for QFTs including gravity, no artificial UV cutoff

> 4D gauge-Yukawa: exact interacting UV fixed point, full perturbative control

 UV fixed points offer maximal predictivity for QFTs including gravity, no artificial UV cutoff

> 4D gauge-Yukawa: exact interacting UV fixed point, full perturbative control

> > 4D gravity: self-consistent fixed point bootstrap test available

 UV fixed points offer maximal predictivity for QFTs including gravity, no artificial UV cutoff

> 4D gauge-Yukawa: exact interacting UV fixed point, full perturbative control

> > 4D gravity: self-consistent fixed point bootstrap test available

> > > black hole thermodynamics: conformal scaling, entropy